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Introduction

1. Why this guide?

Many people still believe that learning Linux is difficult, or that only experts can understand how a Linux
system works. Though there is a lot of free documentation available, the documentation is widely scattered on
the Web, and often confusing, since it is usually oriented toward experienced UNIX or Linux users. Today,
thanks to the advancements in development, Linux has grown in popularity both at home and at work. The
goal of this guide is to show people of all ages that Linux can be simple and fun, and used for all kinds of
purposes.

2. Who should read this book?

This guide was created as an overview of the Linux Operating System, geared toward new users as an
exploration tour and getting started guide, with exercises at the end of each chapter. For more advanced
trainees it can be a desktop reference, and a collection of the base knowledge needed to proceed with system
and network administration. This book contains many real life examples derived from the author's experience
as a Linux system and network administrator, trainer and consultant. We hope these examples will help you to
get a better understanding of the Linux system and that you feel encouraged to try out things on your own.

Everybody who wants to get a "CLUE", a Command Line User Experience, with Linux (and UNIX in
general) will find this book useful.

3. New versions of this guide

This document is published in the Guides section of the Linux Documentation Project collection at
http://www.tldp.org/guides.html; you can also download PDF and PostScript formatted versions here for
printing.

The most recent edition is available at http://tille.soti.org/training/tldp/.

4. Revision History

Revision History

Revision 1.10 2004−01−06 Revised by: MG

Changed encoding to UTF−8, rearranged revision history. Added a lot of markup in the screen sections to
better distinguish prompts from commands; introduced warnings, cautions and tips.

Revision 1.9 2003−11−29 Revised by: MG

Acted upon remarks from readers to clarify issues with compressed files, removable media; found a couple
more spelling errors, added an extra example for cron and one for prompt settings; took out reference to
Acrobat Reader and stuffit, which are not Open Source (pointing to a fancy flight simulator instead ;−) More
on keyboard layout. Added RPM example, added yum package manager.

Revision 1.8 2003−09−16 Revised by: MG

Added app5, corrected some minor details.

Revision 1.7 2003−07−26 Revised by: MG
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Added RPM and apt−get examples, corrected issues with tar incremental backup. Updated glossary and
added links to sections within document.

Revision 1.6 2003−07−21 Revised by: MG

Corrected details in chap 1 to 5, tried shorter lines in intro and chap1 to make it easier on translators using
CVS. See what this gives: next update diffs should be more readable for these parts.

Revision 1.5 2003−06−17 Revised by: MG

Redo of chapter 10 on Networking, left out some sections that were too complicated.

Revision 1.4 2003−04−27 Revised by: MG

Added sound and video playing, chat/conference; got rid of redhat−config image and redhat printtool gui
stuff; bash key combinations in chap2; XML keycap tag on all key combinations, parameter tag on
arguments, guibutton tag for graphical buttons, menuchoice, guimenu and guimenuitem tags for GUI menu
selections; replaced pico with ed, added piece about Linux in the office, replaced abiword image with
openoffice screenshot; added conventions and organization sections in introduction; added konqueror
screenshot in chap2; replaced system−monitor screenshot in chap4 with something more up to date; summary
for chap2, checked exercises; added bash in app3 differing features; License section is now only invariant
section.

Revision 1.3 2003−03−26 Revised by: MG

grep and escape characters; exporting variables; more consequent about security issues; init and cron revised;
window and desktop managers explanation; removed some more too RedHat specific stuff; added piece about
(x)inetd; local authentication; text conversions and encoding; graphical help, graphical file managers, note on
internet connections; spell check.

Revision 1.2 2003−02−28 Revised by: MG

ps a bit better explained; more in getting started: −−help, whatis, apropos explained; more on find; chmod
and umask still contained a couple of errors and incompletenesses; resized images that were too large to be
printed; resized oversized text boxes for better print quality; updated glossary.

Revision 1.1 2003−01−22 Revised by: MG

Bug fixes; removed some more too RedHat specific stuff; corrected minor errors; moved most recent version
to decent URL; improved tar section, added something about jar.

Revision 1.0 2002−12−29 Revised by: MG

Initial release for TLDP

5. Contributions

Many thanks to all the people who shared their experiences. And especially to the Belgian Linux users, among
them my husband, for hearing me out every day and always being generous in their comments.

Also a special thought for Tabatha Marshall for doing a really thorough revision, spell check and styling, and
to Eugene Crosser for marking the errors that we two looked over.

And thanks to all the readers who noticed me about missing topics and who helped to pick out the last errors,
unclear definitions and typos by going through the trouble of mailing me all their remarks. These are also the
people who help me keep this guide up to date.

Finally, a big thank you for the volunteers who are currently translating this document in French, Swedish,
German and more. It is a big work that should not be underestimated; I admire your courage.
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6. Feedback

Missing information, missing links, missing characters? Mail it to the maintainer of this document:

<tille@coresequence.com>

Don't forget to check with the latest version first!

7. Copyright information

© 2002−2004 Machtelt Garrels.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with the
Invariant Sections being the "Copyright information" and "Feedback" sections, with no Front−Cover Texts
and no Back−Cover Texts. A copy of the license is included in Appendix D entitled "GNU Free
Documentation License".

Read The GNU Manifesto if you want to know why this license was chosen for this book.

The author and publisher have made every effort in the preparation of this book to ensure the accuracy of the
information. However, the information contained in this book is offered without warranty, either express or
implied. Neither the author nor the publisher nor any dealer or distributor will be held liable for any damages
caused or alleged to be caused either directly or indirectly by this book.

The logos, trademarks and symbols used in this book are the properties of their respective owners.

8. What do you need?

You will require a computer and a medium containing a Linux distribution. Most of this guide applies to all
Linux distributions − and UNIX in general. Apart from time, there are no further specific requirements.

The Installation HOWTO contains helpful information on how to obtain Linux software and install it on your
computer. Hardware requirements and coexistence with other operating systems are also discussed.

CD images can be downloaded from linux−iso.com and many other locations, see Appendix A.

An interesting alternative for those who don't dare to take the step of an actual Linux installation on their
machine are the Linux distributions that you can run from a CD, such as the Knoppix distribution.

9. Conventions used in this document

The following typographic and usage conventions occur in this text:

Table 1. Typographic and usage conventions

Text type Meaning

Introduction to Linux

Introduction 3

mailto:tille@coresequence.com
http://tille.soti.org/training/tldp/
http://www.fsf.org/gnu/manifesto.html
http://www.tldp.org/HOWTO/Installation-HOWTO/
http://www.linux-iso.com/
http://www.knoppix.com/


"Quoted text" Quotes from people, quoted computer output.

terminal view
Literal computer input and output captured from the terminal, usually rendered
with a light grey background.

command Name of a command that can be entered on the command line.

VARIABLE Name of a variable or pointer to content of a variable, as in $VARNAME.

option Option to a command, as in "the −a option to the ls command".

argument Argument to a command, as in "read man ls".

command options
arguments

Command synopsis or general usage, on a separated line.

filename
Name of a file or directory, for example "Change to the /usr/bin
directory."

Key Keys to hit on the keyboard, such as "type Q to quit".

Button Graphical button to click, like the OK button.

Menu−>Choice
Choice to select from a graphical menu, for instance: "Select Help−>About
Mozilla in your browser."

Terminology Important term or concept: "The Linux kernel is the heart of the system."

See Chapter 1 link to related subject within this guide.

The author Clickable link to an external web resource.

The following images are used:

This is a note

It contains additional information or remarks.

This is a caution

It means be careful.

This is a warning

Be very careful.

This is a tip

Tips and tricks.

10. Organization of this document

This guide aims to be the foundation for all other materials that you can get from The Linux Documentation
Project. As such, it provides you with the fundamental knowledge needed by anyone who wants to start
working with a Linux system, while at the same time it tries to consciously avoid to re−invent the hot water.
Thus, you can expect this book to be incomplete and full of links to sources of additional information on your
system, on the Internet and in your system documentation.

The first chapter is an introduction to the subject on Linux; the next two discuss absolute basic commands.
Chapters 4 and 5 discuss some more advanced but still basic topics. Chapter 6 is needed for continuing with
the rest, since it discusses editing files, an ability you need to pass from Linux newbie to Linux user. The
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following chapters discuss somewhat more advanced topics that you will have to deal with in everyday Linux
use.

All chapters come with exercises that will test your preparedness for the next chapter.

Chapter 1: What is Linux, how did it come into existence, who should use it, installing your
computer.

• 

Chapter 2: Getting started, connecting to the system, basic commands, where to find help.• 
Chapter 3: The filesystem, important files and directories, managing files and directories, security
modes.

• 

Chapter 4: Understanding and managing processes, boot and shutdown procedures, postponing tasks,
repetitive tasks.

• 

Chapter 5: What are standard input, output and error and how are these features used from the
command line.

• 

Chapter 6: Why you should learn to work with an editor, discussion of the most common editors.• 
Chapter 7: Configuring your graphical, text and audio environment, settings for the non−native
English speaking Linux user, tips for adding extra software.

• 

Chapter 8: Converting files to a printable format, getting them out of the printer, hints for solving
print problems.

• 

Chapter 9: Preparing data to be backed up, discussion of various tools.• 
Chapter 10: Overview of Linux networking tools and user applications, with a short discussion of the
underlying service daemon programs and secure networking.

• 

Appendix A: Which books to read and sites to visit when you have finished reading this one.• 
Appendix B: A comparison.• 
Appendix C: If you ever get stuck, these tables might be an outcome. Also a good argument when
your boss insists that YOU should use HIS favorite shell.

• 

Appendix D: What you can do with this guide, from the legal perspective.• 

Introduction to Linux
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Chapter 1. What is Linux?

We will start with an overview of how Linux became the operating system it is today. We
will discuss past and future development and take a closer look at the advantages and
disadvantages of this system. We will talk about distributions, about Open Source in general
and try to explain a little something about GNU.

This chapter answers questions like:

What is Linux?♦ 
Where and how did Linux start?♦ 
Isn't Linux that system where everything is done in text mode?♦ 
Does Linux have a future or is it just hype?♦ 
What are the advantages of using Linux?♦ 
What are the disadvantages?♦ 
What kinds of Linux are there and how do I choose the one that fits me?♦ 
What are the Open Source and GNU movements?♦ 

1.1. History

1.1.1. UNIX

In order to understand the popularity of Linux, we need to travel back in time, about 30 years ago...

Imagine computers as big as houses, even stadiums. While the sizes of those computers posed substantial
problems, there was one thing that made this even worse: every computer had a different operating system.
Software was always customized to serve a specific purpose, and software for one given system didn't run on
another system. Being able to work with one system didn't automatically mean that you could work with
another. It was difficult, both for the users and the system administrators.

Computers were extremely expensive then, and sacrifices had to be made even after the original purchase just
to get the users to understand how they worked. The total cost of IT was enormous.

Technologically the world was not quite that advanced, so they had to live with the size for another decade. In
1969, a team of developers in the Bell Labs laboratories started working on a solution for the software
problem, to address these compatibility issues. They developed a new operating system, which was

Simple and elegant.1. 
Written in the C programming language instead of in assembly code.2. 
Able to recycle code.3. 

The Bell Labs developers named their project "UNIX."

The code recycling features were very important. Until then, all commercially available computer systems
were written in a code specifically developed for one system. UNIX on the other hand needed only a small
piece of that special code, which is now commonly named the kernel. This kernel is the only piece of code
that needs to be adapted for every specific system and forms the base of the UNIX system. The operating
system and all other functions were built around this kernel and written in a higher programming language, C.
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This language was especially developed for creating the UNIX system. Using this new technique, it was much
easier to develop an operating system that could run on many different types of hardware.

The software vendors were quick to adapt, since they could sell ten times more software almost effortlessly.
Weird new situations came in existence: imagine for instance computers from different vendors
communicating in the same network, or users working on different systems without the need for extra
education to use another computer. UNIX did a great deal to help users become compatible with different
systems.

Throughout the next couple of decades the development of UNIX continued. More things became possible to
do and more hardware and software vendors added support for UNIX to their products.

UNIX was initially found only in very large environments with mainframes and minicomputers (note that a
PC is a "micro" computer). You had to work at a university, for the government or for large financial
corporations in order to get your hands on a UNIX system.

But smaller computers were being developed, and by the end of the 80's, many people had home computers.
By that time, there were several versions of UNIX available for the PC architecture, but none of them were
truly free.

1.1.2. Linus and Linux

Linus Torvalds, a young man studying computer science at the university of Helsinki, thought it would be a
good idea to have some sort of freely available academic version of UNIX, and promptly started to code.

He started to ask questions, looking for answers and solutions that would help him get UNIX on his PC.
Below is one of his first posts in comp.os.minix, dating from 1991:

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Newsgroups: comp.os.minix
Subject: Gcc−1.40 and a posix−question
Message−ID: <1991Jul3.100050.9886@klaava.Helsinki.FI>
Date: 3 Jul 91 10:00:50 GMT
Hello netlanders,
Due to a project I'm working on (in minix), I'm interested in the posix
standard definition. Could somebody please point me to a (preferably)
machine−readable format of the latest posix rules? Ftp−sites would be
nice.

From the start, it was Linus' goal to have a free system that was completely compliant with the original UNIX.
That is why he asked for POSIX standards, POSIX still being the standard for UNIX.

In those days plug−and−play wasn't invented yet, but so many people were interested in having a UNIX
system of their own, that this was only a small obstacle. New drivers became available for all kinds of new
hardware, at a continuously rising speed. Almost as soon as a new piece of hardware became available,
someone bought it and submitted it to the Linux test, as the system was gradually being called, releasing more
free code for an ever wider range of hardware. These coders didn't stop at their PC's; every piece of hardware
they could find was useful for Linux.

Back then, those people were called "nerds" or "freaks", but it didn't matter to them, as long as the supported
hardware list grew longer and longer. Thanks to these people, Linux is now not only ideal to run on new PC's,
but is also the system of choice for old and exotic hardware that would be useless if Linux didn't exist.
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Two years after Linus' post, there were 12000 Linux users. The project, popular with hobbyists, grew steadily,
all the while staying within the bounds of the POSIX standard. All the features of UNIX were added over the
next couple of years, resulting in the mature operating system Linux has become today. Linux is a full UNIX
clone, fit for use on workstations as well as on middle−range and high−end servers. Today, all the important
players on the hard− and software market each have their team of Linux developers; at your local dealer's you
can even buy pre−installed Linux systems with official support.

1.1.3. Current application of Linux systems

Today Linux has joined the desktop market. Linux developers concentrated on networking and services in the
beginning, and office applications have been the last barrier to be taken down. We don't like to admit that
Microsoft is ruling this market, so plenty of alternatives have been started over the last couple of years to
make Linux an acceptable choice as a workstation, providing an easy user interface and MS compatible office
applications like word processors, spreadsheets, presentations and the like.

On the server side, Linux is well−known as a stable and reliable platform, providing database and trading
services for companies like Amazon, the well−known online bookshop, US Post Office, the German army and
such. Especially Internet providers and Internet service providers have grown fond of Linux as firewall,
proxy− and web server, and you will find a Linux box within reach of every UNIX system administrator who
appreciates a comfortable management station. Clusters of Linux machines are used in the creation of movies
such as "Titanic", "Shrek" and others. In post offices, they are the nerve centers that route mail and in large
search engine, clusters are used to perform internet searches.These are only a few of the thousands of
heavy−duty jobs that Linux is performing day−to−day across the world.

It is also worth to note that modern Linux not only runs on workstations, mid− and high−end servers, but also
on "gadgets" like PDA's, mobiles, a shipload of embedded applications and even on experimental
wristwatches. This makes Linux the only operating system in the world covering such a wide range of
hardware.

1.2. The user interface

1.2.1. Is Linux difficult?

Whether Linux is difficult to learn depends on the person you're asking. Experienced UNIX users will say no,
because Linux is an ideal operating system for power−users and programmers, because it has been and is
being developed by such people.

Everything a good programmer can wish for is available: compilers, libraries, development and debugging
tools. These packages come with every standard Linux distribution. The C−compiler is included for free, all
the documentation and manuals are there, and examples are often included to help you get started in no time.
It feels like UNIX and switching between UNIX and Linux is a natural thing.

In the early days of Linux, being an expert was kind of required to start using the system. Those who mastered
Linux felt better than the rest of the "lusers" who hadn't seen the light yet. It was common practice to tell a
beginning user to "RTFM" (read the manuals). While the manuals were on every system, it was difficult to
find the documentation, and even if someone did, explanations were in such technical terms that the new user
became easily discouraged from learning the system.

The Linux−using community started to realize that if Linux was ever to be an important player on the
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operating system market, there had to be some serious changes in the accessibility of the system.

1.2.2. Linux for non−experienced users

Companies such as RedHat, SuSE and Mandrake have sprung up, providing packaged Linux distributions
suitable for mass consumption. They integrated a great deal of graphical user interfaces (GUIs), developed by
the community, in order to ease management of programs and services. As a Linux user today you have all the
means of getting to know your system inside out, but it is no longer necessary to have that knowledge in order
to make the system comply to your requests.

Nowadays you can log in graphically and start all required applications without even having to type a single
character, while you still have the ability to access the core of the system if needed. Because of its structure,
Linux allows a user to grow into the system: it equally fits new and experienced users. New users are not
forced to do difficult things, while experienced users are not forced to work in the same way they did when
they first started learning Linux.

While development in the service area continues, great things are being done for desktop users, generally
considered as the group least likely to know how a system works. Developers of desktop applications are
making incredible efforts to make the most beautiful desktops you've ever seen, or to make your Linux
machine look just like your former MS Windows or MacIntosh workstation. The latest developments also
include 3D acceleration support and support for USB devices, single−click updates of system and packages,
and so on. Linux has these, and tries to present all available services in a logical form that ordinary people can
understand. Below is a short list containing some great examples; these sites have a lot of screenshots that will
give you a glimpse of what Linux on the desktop can be like:

http://ximian.com/products/desktop/screenshots.html• 
http://kde.org/screenshots/• 
http://www.codeweavers.com/products/office/• 

1.3. Does Linux have a future?

1.3.1. Open Source

The idea behind Open Source software is rather simple: when programmers can read, distribute and change
code, the code will mature. People can adapt it, fix it, debug it, and they can do it at a speed that dwarfs the
performance of software developers at conventional companies. This software will be more flexible and of a
better quality than software that has been developed using the conventional channels, because more people
have tested it in more different conditions than the closed software developer ever can.

The Open Source initiative started to make this clear to the commercial world, and very slowly, commercial
vendors are starting to see the point. While lots of academics and technical people have already been
convinced for 20 years now that this is the way to go, commercial vendors needed applications like the
Internet to make them realize they can profit from Open Source. Now Linux has grown past the stage where it
was almost exclusively an academic system, useful only to a handful of people with a technical background.
Now Linux provides more than the operating system: there is an entire infrastructure supporting the chain of
effort of creating an operating system, of making and testing programs for it, of bringing everything to the
users, of supplying maintenance, updates and support and customizations, etcetera. Today, Linux is ready to
accept the challenge of a fast−changing world.
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1.3.2. Ten years of experience at your service

While Linux is probably the most well−known Open Source initiative, there is another project that contributed
enormously to the popularity of the Linux operating system. This project is called SAMBA, and its
achievement is the reverse engineering of the Server Message Block (SMB)/Common Internet File System
(CIFS) protocol used for file− and print−serving on PC−related machines, natively supported by MS
Windows NT and OS/2, and Linux. Packages are now available for almost every system and provide
interconnection solutions in mixed environments using MS Windows protocols: Windows−compatible (up to
and includingWinXP) file− and print−servers.

Maybe even more successful than the SAMBA project is the Apache HTTP server project. The server runs on
UNIX, Windows NT and many other operating systems. Originally known as "A PAtCHy server", based on
existing code and a series of "patch files", the name for the matured code deserves to be connoted with the
native American tribe of the Apache, well−known for their superior skills in warfare strategy and
inexhaustible endurance. Apache has been shown to be substantially faster, more stable and more feature−full
than many other web servers. Apache is run on sites that get millions of visitors per day, and while no official
support is provided by the developers, the Apache user community provides answers to all your questions.
Commercial support is now being provided by a number of third parties.

In the category of office applications, a choice of MS Office suite clones is available, ranging from partial to
full implementations of the applications available on MS Windows workstations. These initiatives helped a
great deal to make Linux acceptable for the desktop market, because the users don't need extra training to
learn how to work with new systems. With the desktop comes the praise of the common users, and not only
their praise, but also their specific requirements, which are growing more intricate and demanding by the day.

The Open Source community, consisting largely of people who have been contributing for over half a decade,
assures Linux' position as an important player on the desktop market as well as in general IT application. Paid
employees and volunteers alike are working diligently so that Linux can maintain a position in the market.
The more users, the more questions. The Open Source community makes sure answers keep coming, and
watches the quality of the answers with a suspicious eye, resulting in ever more stability and accessibility.

Listing all the available Linux software is beyond the scope of this guide, as there are tens of thousands of
packages. Throughout this course we will present you with the most common packages, which are almost all
freely available. In order to take away some of the fear of the beginning user, here's a screenshot of one of
your most−wanted programs. You can see for yourself that no effort has been spared to make users who are
switching from Windows feel at home:

Figure 1−1. OpenOffice MS−compatible Spreadsheet
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1.4. Properties of Linux

1.4.1. Linux Pros

A lot of the advantages of Linux are a consequence of Linux' origins, deeply rooted in UNIX, except for the
first advantage, of course:

Linux is free:

As in free beer, they say. If you want to spend absolutely nothing, you don't even have to pay the
price of a CD. Linux can be downloaded in its entirety from the Internet completely for free. No
registration fees, no costs per user, free updates, and freely available source code in case you want to
change the behavior of your system.

Most of all, Linux is free as in free speech:

The license commonly used is the GNU Public License (GPL). The license says that anybody who
may want to do so, has the right to change Linux and eventually to redistribute a changed version, on
the one condition that the code is still available after redistribution. In practice, you are free to grab a
kernel image, for instance to add support for teletransportation machines or time travel and sell your
new code, as long as your customers can still have a copy of that code.

• 

Linux is portable to any hardware platform:

A vendor who wants to sell a new type of computer and who doesn't know what kind of OS his new
machine will run (say the CPU in your car or washing machine), can take a Linux kernel and make it

• 
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work on his hardware, because documentation related to this activity is freely available.
Linux was made to keep on running:

As with UNIX, a Linux system expects to run without rebooting all the time. That is why a lot of
tasks are being executed at night or scheduled automatically for other calm moments, resulting in
higher availability during busier periods and a more balanced use of the hardware. This property
allows for Linux to be applicable also in environments where people don't have the time or the
possibility to control their systems night and day.

• 

Linux is secure and versatile:

The security model used in Linux is based on the UNIX idea of security, which is known to be robust
and of proven quality. But Linux is not only fit for use as a fort against enemy attacks from the
Internet: it will adapt equally to other situations, utilizing the same high standards for security. Your
development machine or control station will be as secure as your firewall.

• 

Linux is scalable:

From a Palmtop with 2 MB of memory to a petabyte storage cluster with hundreds of nodes: add or
remove the appropriate packages and Linux fits all. You don't need a supercomputer anymore,
because you can use Linux to do big things using the building blocks provided with the system. If you
want to do little things, such as making an operating system for an embedded processor or just
recycling your old 486, Linux will do that as well.

• 

The Linux OS and Linux applications have very short debug−times:

Because Linux has been developed and tested by thousands of people, both errors and people to fix
them are found very quickly. It often happens that there are only a couple of hours between discovery
and fixing of a bug.

• 

1.4.2. Linux Cons

There are far too many different distributions:

"Quot capites, tot rationes", as the Romans already said: the more people, the more opinions. At first
glance, the amount of Linux distributions can be frightening, or ridiculous, depending on your point
of view. But it also means that everyone will find what he or she needs. You don't need to be an
expert to find a suitable release.

When asked, generally every Linux user will say that the best distribution is the specific version he is
using. So which one should you choose? Don't worry too much about that: all releases contain more
or less the same set of basic packages. On top of the basics, special third party software is added
making, for example, TurboLinux more suitable for the small and medium enterprise, RedHat for
servers and SuSE for workstations. However, the differences are likely to be very superficial. The best
strategy is to test a couple of distributions; unfortunately not everybody has the time for this. Luckily,
there is plenty of advice on the subject of choosing your Linux. One place is LinuxJournal, which
discusses hardware and support, among many other subjects. The Installation HOWTO also discusses
choosing your distribution.

• 

Linux is not very user friendly and confusing for beginners:

In light of its popularity, considerable effort has been made to make Linux even easier to use,
especially for new users. More information is being released daily, such as this guide, to help fill the
gap for documentation available to users at all levels.

• 
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Is an Open Source product trustworthy?

How can something that is free also be reliable? Linux users have the choice whether to use Linux or
not, which gives them an enormous advantage compared to users of proprietary software, who don't
have that kind of freedom. After long periods of testing, most Linux users come to the conclusion that
Linux is not only as good, but in many cases better and faster that the traditional solutions. If Linux
were not trustworthy, it would have been long gone, never knowing the popularity it has now, with
millions of users. Now users can influence their systems and share their remarks with the community,
so the system gets better and better every day. It is a project that is never finished, that is true, but in
an ever changing environment, Linux is also a project that continues to strive for perfection.

• 

1.5. Linux Flavors

1.5.1. Linux and GNU

Although there are a large number of Linux implementations, you will find a lot of similarities in the different
distributions, if only because every Linux machine is a box with building blocks that you may put together
following your own needs and views. Installing the system is only the beginning of a longterm relationship.
Just when you think you have a nice running system, Linux will stimulate your imagination and creativeness,
and the more you realize what power the system can give you, the more you will try to redefine its limits.

Linux may appear different depending on the distribution, your hardware and personal taste, but the
fundamentals on which all graphical and other interfaces are built, remain the same. The Linux system is
based on GNU tools (Gnu's Not UNIX), which provide a set of standard ways to handle and use the system.
All GNU tools are open source, so they can be installed on any system. Most distributions offer pre−compiled
packages of most common tools, such as RPM packages on RedHat and dpkg packages on Debian, so you
needn't be a programmer to install a package on your system. However, if you are and like doing things
yourself, you will enjoy Linux all the better, since most distributions come with a complete set of
development tools, allowing installation of new software purely from source code. This setup also allows you
to install software even if it does not exist in a pre−packaged form suitable for your system.

A list of common GNU software:

Bash: The GNU shell• 
GCC: The GNU C Compiler• 
GDB: The GNU Debugger• 
Findutils: to search and find files• 
Fontutils: to convert fonts from one format to another or make new fonts• 
The Gimp: GNU Image Manipulation Program• 
Gnome: the GNU desktop environment• 
Emacs: a very powerful editor• 
Ghostscript and Ghostview: interpreter and graphical frontend for PostScript files.• 
GNU Photo: software for interaction with digital cameras• 
Octave: a programming language, primarily intended to perform numerical computations and image
processing.

• 

GNU SQL: relational database system• 
Radius: a remote authentication and accounting server• 
...• 
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Many commercial applications are available for Linux, and for more information about these packages we
refer to their specific documentation. Throughout this guide we will only discuss freely available software,
which comes (in most cases) with a GNU license.

To install missing or new packages, you will need some form of software management. The most common
implementations include RPM, dpkg and Ximian Red Carpet. RPM is the RedHat Package Manager, which is
used on a variety of Linux systems, eventhough the name does not suggest this. Dpkg is the Debian package
management system, which uses an interface called apt−get, that can manage RPM packages as well. Ximian
Red Carpet is a third party implementation of RPM with a graphical front−end. Other third party software
vendors may have their own installation procedures, sometimes resembling the InstallShield and such, as
known on MS Windows and other platforms. As you advance into Linux, you will likely get in touch with one
or more of these programs.

1.5.2. GNU/Linux

The Linux kernel (the bones of your system, see Section 3.2.3.1) is not part of the GNU project but uses the
same license as GNU software. A great majority of utilities and development tools (the meat of your system),
which are not Linux−specific, are taken from the GNU project. Because any usable system must contain both
the kernel and at least a minimal set of utilities, some people argue that such a system should be called a
GNU/Linux system.

In order to obtain the highest possible degree of independence between distributions, this is the sort of Linux
that we will discuss throughout this course. If we are not talking about a GNU/Linux system, the specific
distribution, version or program name will be mentioned.

1.5.3. Which distribution should I install?

Prior to installation, the most important factor is your hardware. Since every Linux distribution contains the
basic packages and can be built to meet almost any requirement (because they all use the Linux kernel), you
only need to consider if the distribution will run on your hardware. LinuxPPC for example has been made to
run on MacIntosh and other PowerPCs and does not run on an ordinary x86 based PC. LinuxPPC does run on
the new Macs, but you can't use it for some of the older ones with ancient bus technology. Another tricky case
is Sun hardware, which could be an old SPARC CPU or a newer UltraSparc, both requiring different versions
of Linux.

Some Linux distributions are optimized for certain processors, such as Athlon CPUs, while they will at the
same time run decent enough on the standard 486, 586 and 686 Intel processors. Sometimes distributions for
special CPUs are not as reliable, since they are tested by fewer people.

Most Linux distributions offer a set of programs for generic PCs with special packages containing optimized
kernels for the x86 Intel based CPUs. These distributions are well−tested and maintained on a regular basis,
focusing on reliant server implementation and easy installation and update procedures. Examples are RedHat,
SuSE and Mandrake, which are by far the most popular Linux systems and generally considered easy to
handle for the beginning user, while not blocking professionals from getting the most out of their Linux
machines. Linux also runs decently on laptops and middle−range servers. Drivers for new hardware are
included only after extensive testing, which adds to the stability of a system.

While the standard desktop might be Gnome on one system, another might offer KDE by default. Generally,
both Gnome and KDE are available for all major Linux distributions. Other window and desktop managers
are available for more advanced users.
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The standard installation process allows users to choose between different basic setups, such as a workstation,
where all packages needed for everyday use and development are installed, or a server installation, where
different network services can be selected. Expert users can install every combination of packages they want
during the initial installation process.

The goal of this guide is to apply to all Linux distributions. For your own convenience, however, it is strongly
advised that beginners stick to a mainstream distribution, supporting all common hardware and applications
by default. The following are very good choices for novices:

RedHat Linux• 
SuSE Linux• 
Mandrake• 
Knoppix: an operating system that runs from your CD−ROM, you don't need to install anything.• 

Downloadable ISO−images can be obtained from LinuxISO.org. The main distributions can be purchased in
any decent computer shop.

1.6. Summary

In this chapter, we learned that:

Linux is an implementation of UNIX.• 
The Linux operating system is written in the C programming language.• 
De gustibus et coloribus non disputandum est: there's a Linux for everyone.• 
Linux uses GNU tools, a set of freely available standard tools for handling the operating system.• 

1.7. Exercises

A practical exercise for starters: install Linux on your PC. Read the installation manual for your distribution
and/or the Installation HOWTO and do it.

Read the docs!

Most errors stem from not reading the information provided during the install. Reading the
installation messages carefully is the first step on the road to success.

Things you must know BEFORE starting a Linux installation:

Will this distribution run on my hardware?

Check with http://www.ibiblio.org/mdw/HOWTO/Hardware−HOWTO/index.html when in doubt
about compatibility of your hardware.

• 

What kind of keyboard do I have (number of keys, layout)? What kind of mouse (serial/parallel,
number of buttons)? How many MB of RAM?

• 

Will I install a basic workstation or a server, or will I need to select specific packages myself?• 
Will I install from my hard disk, from a CD−ROM, or using the network? Should I adapt the BIOS
for any of this? Does the installation method require a boot disk?

• 

Will Linux be the only system on this computer, or will it be a dual boot installation? Should I make a
large partition in order to install virtual systems later on, or is this a virtual installation itself?

• 
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Is this computer in a network? What is its hostname, IP address? Are there any gateway servers or
other important networked machines my box should communicate with?

Linux expects to be networked

Not using the network or configuring it incorrectly may result in slow startup.

• 

Is this computer a gateway/router/firewall? (If you have to think about this question, it probably isn't.)• 
Partitioning: let the installation program do it for you this time, we will discuss partitions in detail in
Chapter 3. There is system−specific documentation available if you want to know everything about it.
If your Linux distribution does not offer default partitioning, that probably means it is not suited for
beginners.

• 

Will this machine start up in text mode or in graphical mode?• 
Think of a good password for the administrator of this machine (root). Create a non−root user account
(non−privileged access to the system).

• 

Do I need a rescue disk? (recommended)• 
Which languages do I want?• 

The full checklist can be found at http://www.ibiblio.org/mdw/HOWTO/Installation−HOWTO/index.html.

In the following chapters we will find out if the installation has been successful.
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Chapter 2. Quickstart

In order to get the most out of this guide, we will immediately start with a practical chapter on
connecting to the Linux system and doing some basic things.

We will discuss:

Connecting to the system♦ 
Disconnecting from the system♦ 
Text and graphic mode♦ 
Changing your password♦ 
Navigating through the file system♦ 
Determining file type♦ 
Looking at text files♦ 
Finding help♦ 

2.1. Logging in, activating the user interface and logging
out

2.1.1. Introduction

In order to work on a Linux system directly, you will need to provide a user name and password. You always
need to authenticate to the system. As we already mentioned in the exercise from Chapter 1, most PC−based
Linux systems have two basic modes for a system to run in: either quick and sober in text console mode,
which looks like DOS with mouse, multitasking and multi−user features, or in graphical console mode, which
looks better but eats more system resources.

2.1.2. Graphical mode

This is the default nowadays on most desktop computers. You know you will connect to the system using
graphical mode when you are first asked for your user name, and then, in a new window, to type your
password.

To log in, make sure the mouse pointer is in the login window, provide your user name and password to the
system and click OK or press Enter.

Careful with that root account!

It is generally considered a bad idea to connect (graphically) using the root user name, the system
adminstrator's account, since the use of graphics includes running a lot of extra programs, in root's case
with a lot of extra permissions. To keep all risks as low as possible, use a normal user account to connect
graphically. But there are enough risks to keep this in mind as a general advice, for all use of the root
account: only log in as root when extra privileges are required.

After entering your user name/password combination, it can take a little while before the graphical
environment is started, depending on the CPU speed of your computer, on the software you use and on your
personal settings.
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To continue, you will need to open a terminal window or xterm for short (X being the name for the underlying
software supporting the graphical environment). This program can be found in the Applications−>Utilities,
System Tools or Internet menu, depending on what window manager you are using. There might be icons that
you can use as a shortcut to get an xterm window as well, and clicking the right mouse button on the desktop
background will usually present you with a menu containing a terminal window application.

While browsing the menus, you will notice that a lot of things can be done without entering commands via the
keyboard. For most users, the good old point−'n'−click method of dealing with the computer will do. But this
guide is for future network and system administrators, who will need to meddle with the heart of the system.
They need a stronger tool than a mouse to handle all the tasks they will face. This tool is the shell, and when
in graphical mode, we activate our shell by opening a terminal window.

The terminal window is your control panel for the system. Almost everything that follows is done using this
simple but powerful text tool. A terminal window should always show a command prompt when you open
one. This terminal shows a standard prompt, which displays the user's login name, and the current working
directory, represented by the twiddle (~):

Figure 2−1. Terminal window

Another common form for a prompt is this one:

[user@host dir]

In the above example, user will be your login name, hosts the name of the machine you are working on, and
dir an indication of your current location in the file system.

Later we will discuss prompts and their behavior in detail. For now, it suffices to know that prompts can
display all kinds of information, but that they are not part of the commands you are giving to your system.

To disconnect from the system in graphical mode, you need to close all terminal windows and other
applications. After that, hit the logout icon or find Log Out in the menu. Closing everything is not really
necessary, and the system can do this for you, but session management might put all currently open
applications back on your screen when you connect again, which takes longer and is not always the desired
effect. However, this behavior is configurable.

When you see the login screen again, asking to enter user name and password, logout was successful.
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2.1.3. Text mode

You know you're in text mode when the whole screen is black, showing (in most cases white) characters. A
text mode login screen typically shows some information about the machine you are working on, the name of
the machine and a prompt waiting for you to log in:

RedHat Linux Release 8.0 (Psyche)

blast login: _

The login is different from a graphical login, in that you have to hit the Enter key after providing your user
name, because there are no buttons on the screen that you can click with the mouse. Then you should type
your password, followed by another Enter. You won't see any indication that you are entering something, not
even an asterisk, and you won't see the cursor move. But this is normal on Linux and is done for security
reasons.

When the system has accepted you as a valid user, you may get some more information, called the message of
the day, which can be anything. Additionally, it is popular on UNIX systems to display a fortune cookie,
which contains some general wise or unwise (this is up to you) thoughts. After that, you will be given a shell,
indicated with the same prompt that you would get in graphical mode.

Don't log in as root

Also in text mode: log in as root only to do setup and configuration that absolutely requires administrator
privileges, such as adding users, installing software packages, and performing network and other system
configuration. Once you are finished, immediately leave the special account and resume your work as a
non−privileged user.

Logging out is done by entering the logout command, followed by Enter. You are successfully disconnected
from the system when you see the login screen again.

Don't hit the power button!

Don't power−off the computer after logging out. It is not meant to be shut off without application of the
proper procedures for halting the system. Powering it off without going through the halting process
might cause severe damage!

Now that we know how to connect to and disconnect from the system, we're ready for our first commands.

2.2. Absolute basics

2.2.1. The commands

These are the quickies, which we need to get started; we will discuss them later in more detail.

Table 2−1. Quickstart commands
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Command Meaning

ls Displays a list of files in the current working directory, like the dir command in DOS

cd directory change directories

passwd change the password for the current user

file filename display file type of file with name filename

cat textfile throws content of textfile on the screen

pwd display present working directory

exit or logout leave this session

man command read man pages on command

info command read Info pages on command

apropos string search the whatis database for strings

2.2.2. General remarks

You type these commands after the prompt, in a terminal window in graphical mode or in text mode, followed
by Enter.

Commands can be issued by themselves, such as ls. A command behaves different when you specify an
option, usually preceded with a dash (−), as in ls −a. The same option character may have a different meaning
for another command. GNU programs take long options, preceded by two dashes (−−), like ls −−all. Some
commands have no options.

The argument(s) to a command are specifications for the object(s) on which you want the command to take
effect. An example is ls /etc, where the directory /etc is the argument to the ls command. This indicates
that you want to see the content of that directory, instead of the default, which would be the content of the
current directory, obtained by just typing ls followed by Enter. Some commands require arguments,
sometimes arguments are optional.

You can find out whether a command takes options and arguments, and which ones are valid, by checking the
online help for that command, see Section 2.3.

In Linux, like in UNIX, directories are separated using forward slashes, like the ones used in web addresses
(URLs). We will discuss directory structure in−depth later.

The symbols . and .. have special meaning when directories are concerned. We will try to find out about those
during the exercises, and more in the next chapter.

Try to avoid logging in with or using the system administrator's account, root. Besides doing your normal
work, most tasks, including checking the system, collecting information etc., can be executed using a normal
user account with no special permissions at all. If needed, for instance when creating a new user or installing
new software, the preferred way of obtaining root access is by switching user IDs, see Section 3.2.1 for an
example.

Almost all commands in this book can be executed without system administrator privileges. In most cases,
when issuing a command or starting a program as a non−privileged user, the system will warn you or prompt
you for the root password when root access is required. Once you've done, leave the application or session
that gives you root privileges immediately.
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Reading documentation should become your second nature. Especially in the beginning, it is important to read
system documentation, manuals for basic commands, HOWTOs and so on. Since the amount of
documentation is so enormous, it is impossible to include all related documentation. This book will try to
guide you to the most appropriate documentation on every subject discussed, in order to stimulate the habit of
reading the man pages.

2.2.3. Using Bash features

Several special key combinations allow you to do things easier and faster with the GNU shell, Bash, which is
the default on almost any Linux system, see Section 3.2.3.2. Below is a list of the most commonly used
features; you are strongly suggested to make a habit out of using them, so as to get the most out of your Linux
experience from the very beginning.

Table 2−2. Key combinations in Bash

Key or key
combination

Function

Ctrl+A Move cursor to the beginning of the command line.

Ctrl+C End a running program and return the prompt, see Chapter 4.

Ctrl+D Log out of the current shell session, equal to typing exit or logout.

Ctrl+E Move cursor to the end of the command line.

Ctrl+H Generate backspace character.

Ctrl+L Clear this terminal.

Ctrl+R Search command history, see Section 3.3.3.4.

Ctrl+Z Suspend a program, see Chapter 4.

ArrowLeft and
ArrowRight

Move the cursor one place to the left or right on the command line, so that you can
insert characters at other places than just at the beginning and the end.

ArrowUp and
ArrowDown

Browse history. Go to the line that you want to repeat, eventually edit details, and
press Enter to save time.

Shift+PageUp and
Shift+PageDown

Browse terminal buffer (to see text that has "scrolled off" the screen).

Tab
Command or filename completion; when multiple choices are possible, the system
will either signal with an audio or visual bell, or, if too many choices are possible,
ask you if you want to see them all.

Tab Tab Shows file or command completion possibilities.

The last two items in the above table may need some extra explanantions. For instance, if you want to change
into the directory directory_with_a_very_long_name, you are not going to type that very long
name, no. You just type on the command line cd dir, then you press Tab and the shell completes the name for
you, if no other files are starting with the same three characters. Of course, if there are no other items starting
with "d", then you might just as wel type cd d and then Tab. If more than one file starts with the same
characters, the shell will signal this to you, upon which you can hit Tab twice with short interval, and the shell
presents the choices you have:

your_prompt> cd st
starthere        stuff          stuffit
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In the above example, if you type "a" after the first two characters and hit Tab again, no other possibilities are
left, and the shell completes the directory name, without you having to type the string "rthere":

your_prompt> cd starthere

Of course, you'll still have to hit Enter to accept this choice.

In the same example, if you type "u", and then hit Tab, the shell will add the "ff" for you, but then it protests
again, because multiple choices are possible. If you type Tab Tab again, you'll see the choices; if you type
one or more characters that make the choice unambiguous to the system, and Tab again, or Enter when
you've reach the end of the file name that you want to choose, the shell completes the file name and changes
you into that directory − if indeed it is a directory name.

This works for all file names that are arguments to commands.

The same goes for command name completion. Typing ls and then hitting the Tab key twice, lists all the
commands in your PATH (see Section 3.2.1) that start with these two characters:

your_prompt> ls
ls           lsdev        lspci        lsraid       lsw
lsattr       lsmod        lspgpot      lss16toppm
lsb_release  lsof         lspnp        lsusb

2.3. Getting help

2.3.1. Be warned

GNU/Linux is all about becoming more self−reliant. And as usual with this system, there are several ways to
achieve the goal. A common way of getting help is finding someone who knows, and however patient and
peace−loving the Linux−using community will be, almost everybody will expect you to have tried one or
more of the methods in this section before asking them, and the ways in which this viewpoint is expressed
may be rather harsh if you prove not to have followed this basic rule.

2.3.2. The man pages

A lot of beginning users fear the man (manual) pages, because they are an overwhelming source of
documentation. They are, however, very structured, as you will see from the example below on: man man.

Reading man pages is usually done in a terminal window when in graphical mode, or just in text mode if you
prefer it. Type the command like this at the prompt, followed by Enter:

yourname@yourcomp ~> man man

The documentation for man will be displayed on your screen after you press Enter:

man(1)                                                         man(1)

NAME
 man − format and display the on−line manual pages
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 manpath − determine user's search path for man pages

SYNOPSIS
 man [−acdfFhkKtwW] [−−path] [−m system] [−p string] [−C config_file]
 [−M pathlist] [−P pager] [−S section_list] [section] name ...

DESCRIPTION
 man formats and displays the on−line manual pages.  If you specify
 section, man only looks in that section of the manual.  
 name is normally the name of the manual page, which is typically the 
 name of a  command, function, or file.  However, if name contains a 
 slash (/) then man interprets it as a file specification, so that you
 can do man ./foo.5 or even man /cd/foo/bar.1.gz.

 See  below  for  a  description  of where man looks for the manual
 page files.

OPTIONS
 −C  config_file
lines 1−27

Browse to the next page using the space bar. You can go back to the previous page using the b−key. When
you reach the end, man will quit and you get the prompt back, or type q if you want to leave the man page
before reaching the end.

Each man page usually contains a couple of standard sections, as we can see from the man man example:

The first line contains the name of the command you are reading about, and the id of the section in
which this man page is located. The man pages are ordered in chapters. Commands are likely to have
multiple man pages, for example the man page from the user section, the man page from the system
admin section, and the man page from the programmer section.

• 

The name of the command and a short description are given, which is used for building an index of
the man pages. You can look for any given search string in this index using the apropos command.

• 

The synopsis of the command provides a technical notation of all the options and/or arguments this
command can take. You can think of an option as a way of executing the command. The argument is
what you execute it on. Some commands have no options or no arguments. Optional options and
arguments are put in between "[" and "]" to indicate that they can be left out.

• 

A longer description of the command is given.• 
Options with their descriptions are listed. Options can usually be combined. If not so, this section will
tell you about it.

• 

Environment describes the shell variables that influence the behavior of this command (not all
commands have this).

• 

Sometimes sections specific to this command are provided, such as the CAT PAGES section in the
example.

• 

A reference to other man pages is given in the "SEE ALSO" section. In between parentheses is the
number of the man page section in which to find this command. Experienced users often switch to the
"SEE ALSO" part using the / command followed by the search string SEE and press Enter.

• 

Usually there is also information about known bugs (anomalies) and where to report new bugs you
may find.

• 

There might also be author and copyright information.• 

Some commands have multiple man pages. For instance, the passwd command has a man page in section 1
and another in section 5. By default, the man page with the lowest number is shown. If you want to see
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another section than the default, specify it after the man command:

man 5 passwd

If you want to see all man pages about a command, one after the other, use the −a to man:

man −a passwd

This way, when you reach the end of the first man page and press SPACE again, the man page from the next
section will be displayed.

2.3.3. More info

2.3.3.1. The Info pages

In addition to the man pages, you can read the info pages about a command, using the info command. These
usually contain more recent information and are somewhat easier to use. The man pages for some commands
refer to the info pages.

Get started by typing info info in a terminal window:

File: info.info,  Node: Top,  Next: Getting Started,  Up: (dir)

Info: An Introduction
*********************

   Info is a program, which you are using now, for reading
documentation of computer programs.  The GNU Project distributes most
of its on−line manuals in the Info format, so you need a program called
"Info reader" to read the manuals.  One of such programs you are using
now.

   If you are new to Info and want to learn how to use it, type the
command `h' now.  It brings you to a programmed instruction sequence.

   To learn advanced Info commands, type `n' twice.  This brings you to
`Info for Experts', skipping over the `Getting Started' chapter.

* Menu:

* Getting Started::             Getting started using an Info reader.
* Advanced Info::               Advanced commands within Info.
* Creating an Info File::       How to make your own Info file.
−−zz−Info: (info.info.gz)Top, 24 lines −−Top−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Welcome to Info version 4.2. Type C−h for help, m for menu item.

Use the arrow keys to browse trough the text and move the cursor on a line starting with an asterisk,
containing the keyword about which you want info, then hit Enter. Use the P and N keys to go to the previous
or next subject. The space bar will move you one page further, no matter whether this starts a new subject or
an info page for another command. Use Q to quit. The info program has more information.
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2.3.3.2. The whatis and apropos commands

A short index of explanations for commands is available using the whatis command, like in the examples
below:

[your_prompt] whatis ls
ls                   (1)  − list directory contents

This displays short information about a command, and the first section in the collection of man pages that
contains an appropriate page.

If you don't know where to get started and which man page to read, apropos gives more information. Say that
you don't know how to start a browser, then you could enter the following command:

another prompt> apropos browser
Galeon [galeon](1)  − gecko−based GNOME web browser
lynx           (1)  − a general purpose distributed information browser 
                    for the World Wide Web
ncftp          (1)  − Browser program for the File Transfer Protocol
opera          (1)  − a graphical web browser
pilot          (1)  − simple file system browser in the style of the 
                    Pine Composer
pinfo          (1)  − curses based lynx−style info browser
pinfo [pman]   (1)  − curses based lynx−style info browser
viewres        (1x)  − graphical class browser for Xt

After pressing Enter you will see that a lot of browser related stuff is on your machine: not only web
browsers, but also file and FTP browsers, and browsers for documentation. If you have development packages
installed, you may also have the accompanying man pages dealing with writing programs having to do with
browsers. Generally, a command with a man page in section one, so one marked with "(1)", is suitable for
trying out as a user. The user who issued the above apropos might consequently try to start the commands
galeon, lynx or opera, since these clearly have to do with browsing the world wide web.

2.3.3.3. The −−help option

Most GNU commands support the −−help, which gives a short explanation about how to use the command
and a list of available options. Below is the output of this option with the cat:

userprompt@host: cat −−help
Usage: cat [OPTION] [FILE]...
Concatenate FILE(s), or standard input, to standard output.

  −A, −−show−all           equivalent to −vET
  −b, −−number−nonblank    number nonblank output lines
  −e                       equivalent to −vE
  −E, −−show−ends          display $ at end of each line
  −n, −−number             number all output lines
  −s, −−squeeze−blank      never more than one single blank line
  −t                       equivalent to −vT
  −T, −−show−tabs          display TAB characters as ^I
  −u                       (ignored)
  −v, −−show−nonprinting   use ^ and M− notation, 
                           except for LFD and TAB
      −−help     display this help and exit
      −−version  output version information and exit
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With no FILE, or when FILE is −, read standard input.

Report bugs to <bug−textutils@gnu.org>.

2.3.3.4. Graphical help

Don't despair if you prefer a graphical user interface. Konqueror, the default KDE file manager, provides
painless and colourful access to the man and Info pages. You may want to try "info:info" in the Location
address bar, and you will get a browsable Info page about the info command. Similarly, "man:ls" will present
you with the man page for the ls command. You even get command name completion: you will see the man
pages for all the commands starting with "ls" in a scroll−down menu. Entering "info:/dir" in the address
location toolbar displays all the Info pages, arranged in utility categories. Excellent Help content, including
the Konqueror Handbook. Start up from the menu or by typing the command konqueror in a terminal
window, followed by Enter; see the screenshot below.

Figure 2−2. Konqueror as help browser

The Gnome Help Browser is very user friendly as well. You can start it selecting Applications−>Help from
the Gnome menu, by clicking the lifeguard icon on your desktop or by entering the command gnome−help in
a terminal window. The system documentation and man pages are easily browsable with a plain interface.
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The nautilus file manager provides a searchable index of the man and Info pages, they are easily browsable
and interlinked. Nautilus is started from the command line, or clicking your home directory icon, or from the
Gnome menu.

The big advantage of GUIs for system documentation is that all information is completely interlinked, so you
can click through in the "SEE ALSO" sections and wherever links to other man pages appear, and thus browse
and acquire knowledge without interruption for hours at the time.

2.3.3.5. Exceptions

Some commands don't have separate documentation, because they are part of another command. cd, exit,
logout and pwd are such exceptions. They are part of your shell program and are called shell built−in
commands. For information about these, refer to the man or info page of your shell. Most beginning Linux
users have a Bash shell. See Section 3.2.3.2 for more about shells.

If you have been changing your original system configuration, it might also be possible that man pages are
still there, but not visible because your shell environment has changed. In that case, you will need to check the
MANPATH variable. How to do this is explained in Section 7.2.1.2.

Some programs or packages only have a set of instructions or references in the directory /usr/share/doc.
See Section 3.3.4 to display.

In the worst case, you may have removed the documentation from your system by accident (hopefully by
accident, because it is a very bad idea to do this on purpose). In that case, first try to make sure that there is
really nothing appropriate left using a search tool, read on in Section 3.3.3. If so, you may have to re−install
the package that contains the command to which the documentation applied, see Section 7.6.

2.4. Summary

Linux traditionally operates in text mode or in graphical mode. Since CPU power and RAM are not the cost
anymore these days, every Linux user can afford to work in graphical mode and will usually do so. This does
not mean that you don't have to know about text mode: we will work in the text environment throughout this
course, using a terminal window.

Linux encourages its users to acquire knowledge and to become independent. Inevitably, you will have to read
a lot of documentation to achieve that goal; that is why, as you will notice, we refer to extra documentation for
almost every command, tool and problem listed in this book. The more docs you read, the easier it will
become and the faster you will leaf through manuals. Make reading documentation a habit as soon as possible.
When you don't know the answer to a problem, refering to the documentation should become a second nature.

2.5. Exercises

Most of what we learn is by making mistakes and by seeing how things can go wrong. These exercises are
made to get you to read some error messages. The order in which you do these exercises is important.

Don't forget to use the Bash features on the command line: try to do the exercises typing as few characters as
possible!
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2.5.1. Connecting and disconnecting

Determine whether you are working in text or in graphical mode.

I am working in text/graphical mode. (cross out what's not applicable)

• 

Log in with the user name and password you made for yourself during the installation.• 
Log out.• 
Log in again, using a non−existent user name

−> What happens?

• 

2.5.2. Passwords

Log in again with your user name and password.

Change your password into P6p3.aa! and hit the Enter key.

−> What happens?

• 

Try again, this time enter a password that is ridiculously easy, like 123 or aaa.

−> What happens?

• 

Try again, this time don't enter a password but just hit the Enter key.

−> What happens?

• 

Try the command psswd instead of passwd

−> What happens?

• 

2.5.3. Directories

These are some exercises to help you get the feel.

Enter the command cd blah

−> What happens?

• 

Enter the command cd ..

Mind the space between "cd" and ".."! Use the pwd command.

−> What happens?

• 

List the directory contents with the ls command.

−> What do you see?

−> What do you think these are?

−> Check using the pwd command.

• 

Enter the cd command.

−> What happens?

• 
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Repeat step 2 two times.

−> What happens?

• 

Display the content of this directory.• 
Try the command cd root

−> What happens?

−> To which directories do you have access?

• 

Repeat step 4.

Do you know another possibility to get where you are now?

• 

2.5.4. Files

Change directory to / and then to etc. Type ls; if the output is longer than your screen, make the
window longer, or try Shift+PageUp and Shift+PageDown.

The file inittab contains the answer to the first question in this list. Try the file command on it.

−> The file type of my inittab is .....

• 

Use the command cat inittab and read the file.

−> What is the default mode of your computer?

• 

Return to your home directory using the cd command.• 
Enter the command file .

−> Does this help to find the meaning of "."?

• 

Can you look at "." using the cat command?• 
Display help for the cat program, using the −−help option. Use the option for numbering of output
lines to count how many users are listed in the file /etc/passwd.

• 

2.5.5. Getting help

Read man intro• 
Read man ls• 
Read info passwd• 
Enter the apropos pwd command.• 
Try man or info on cd.

−> How would you find out more about cd?

• 

Read ls −−help and try it out.• 

Introduction to Linux

Chapter 2. Quickstart 29



Chapter 3. About files and the file system

After the initial exploration in Chapter 2, we are ready to discuss the files and directories on a
Linux system in more detail. Many users have difficulties with Linux because they lack an
overview of what kind of data is kept in which locations. We will try to shine some light on
the organization of files in the file system.

We will also list the most important files and directories and use different methods of viewing
the content of those files, and learn how files and directories can be created, moved and
deleted.

After completion of the exercises in this chapter, you will be able to:

Describe the layout of a Linux file system♦ 
Display and set paths♦ 
Describe the most important files, including kernel and shell♦ 
Find lost and hidden files♦ 
Create, move and delete files and directories♦ 
Display contents of files♦ 
Understand and use different link types♦ 
Find out about file properties and change file permissions♦ 

3.1. General overview of the Linux file system

3.1.1. Files

3.1.1.1. General

A simple description of the UNIX system, also applicable to Linux, is this:

"On a UNIX system, everything is a file; if something is not a file, it is a process."

This statement is true because there are special files that are more than just files (named pipes and sockets, for
instance), but to keep things simple, saying that everything is a file is an acceptable generalization. A Linux
system, just like UNIX, makes no difference between a file and a directory, since a directory is just a file
containing names of other files. Programs, services, texts, images, and so forth, are all files. Input and output
devices, and generally all devices, are considered to be files, according to the system.

In order to manage all those files in an orderly fashion, man likes to think of them in an ordered tree−like
structure on the hard disk, as we know from MS−DOS (Disk Operating System) for instance. The large
branches contain more branches, and the branches at the end contain the tree's leaves or normal files. For now
we will use this image of the tree, but we will find out later why this is not a fully accurate image.

3.1.1.2. Sorts of files

Most files are just files, called regular files; they contain normal data, for example text files, executable files
or programs, input for or output from a program and so on.
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While it is reasonably safe to suppose that everything you encounter on a Linux system is a file, there are
some exceptions.

Directories: files that are lists of other files.• 
Special files: the mechanism used for input and output. Most special files are in /dev, we will
discuss them later.

• 

Links: a system to make a file or directory visible in multiple parts of the system's file tree. We will
talk about links in detail.

• 

(Domain) sockets: a special file type, similar to TCP/IP sockets, providing inter−process networking
protected by the file system's access control.

• 

Named pipes: act more or less like sockets and form a way for processes to communicate with each
other, without using network socket semantics.

• 

The −l option to ls displays the file type, using the first character of each input line:

jaime:~/Documents> ls −l
total 80
−rw−rw−r−−   1 jaime   jaime   31744 Feb 21 17:56 intro Linux.doc
−rw−rw−r−−   1 jaime   jaime   41472 Feb 21 17:56 Linux.doc
drwxrwxr−x   2 jaime   jaime    4096 Feb 25 11:50 course

This table gives an overview of the characters determining the file type:

Table 3−1. File types in a long list

Symbol Meaning

− Regular file

d Directory

l Link

c Special file

s Socket

p Named pipe

In order not to always have to perform a long listing for seeing the file type, a lot of systems by default don't
issue just ls, but ls −F, which suffixes file names with one of the characters "/=*|@" to indicate the file type.
To make it extra easy on the beginning user, both the −F and −−color options are usually combined, see
Section 3.3.1.1. We will use ls −F throughout this document for better readability.

As a user, you only need to deal directly with plain files, executable files, directories and links. The special
file types are there for making your system do what you demand from it and are dealt with by system
administrators and programmers.

Now, before we look at the important files and directories, we need to know more about partitions.

3.1.2. About partitioning
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3.1.2.1. Why partition?

Most people have a vague knowledge of what partitions are, since every operating system has the ability to
create or remove them. It may seem strange that Linux uses more than one partition on the same disk, even
when using the standard installation procedure, so some explanation is called for.

The goal of having different partitions is primarily to achieve higher data security in case of disaster. By
dividing the hard disk in partitions, data can be grouped and separated. When an accident occurs, only the data
in the partition that got the hit will be damaged, while the data on the other partitions will most likely survive.

This principle dates from the days when Linux didn't have journaled file systems and power failures might
have lead to disaster. The use of partitions remains for security and robustness reasons, so a breach on one
part of the system doesn't automatically mean that the whole computer is in danger. This is currently the most
important reason for partitioning.

Mind that having a journaled file system only provides data security in case of power failure and sudden
disconnection of storage devices. This does not protect your data against bad blocks and logical errors in the
file system. In those cases, you should use a RAID (Redundant Array of Inexpensive Disks) solution.

3.1.2.2. Partition layout and types

There are two kinds of major partitions on a Linux system:

data partition: normal Linux system data, including the root partition containing all the data to start
up and run the system; and

• 

swap partition: expansion of the computer's physical memory, extra memory on hard disk.• 

Most systems contain a root partition, one or more data partitions and one or more swap partitions. Systems in
mixed environments may contain partitions for other system data, such as a partition with a FAT or VFAT file
system for MS Windows data.

Most Linux systems use fdisk at installation time to set the partition type. As you may have noticed during the
exercise from Chapter 1, this usually happens automatically. On some occasions, however, you may not be so
lucky. In such cases, you will need to select the partition type manually and even manually do the actual
partitioning. The standard Linux partitions have number 82 for swap and 83 for data, which can be journaled
(ext3) or normal (ext2, on older systems). The fdisk utility has built−in help, should you forget these values.

Apart from these two, Linux supports a variety of other file system types, such as the relatively new Reiser
file system, JFS, NFS, FATxx and many other file systems natively available on other (proprietary) operating
systems.

The standard root partition (indicated with a single forward slash, /) is about 100−500 MB, and contains the
system configuration files, most basic commands and server programs, system libraries, some temporary
space and the home directory of the administrative user. A standard installation requires about 250 MB for the
root partition.

Swap space (indicated with swap) is only accessible for the system itself, and is hidden from view during
normal operation. Swap is the system that ensures, like on normal UNIX systems, that you can keep on
working, whatever happens. On Linux, you will virtually never see irritating messages like Out of memory,
please close some applications first and try again, because of this extra memory. The swap or virtual memory
procedure has long been adopted by operating systems outside the UNIX world by now.
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Using memory on a hard disk is naturally slower than using the real memory chips of a computer, but having
this little extra is a great comfort. We will learn more about swap when we discuss Processes in Chapter 4.

Linux generally counts on having twice the amount of physical memory in the form of swap space on the hard
disk. When installing a system, you have to know how you are going to do this. An example on a system with
512 MB of RAM:

1st possibility: one swap partition of 1 GB• 
2nd possibility: two swap partitions of 512 MB• 
3rd possibility: with two hard disks: 1 partition of 512 MB on each disk.• 

The last option will give the best results when a lot of I/O is to be expected.

Read the software documentation for specific guidelines. Some applications, such as databases, might require
more swap space. Others, such as some handheld systems, might not have any swap at all by lack of a hard
disk. Swap space may also depend on your kernel version.

The kernel is on a separate partition as well in many distributions, because it is the most important file of your
system. If this is the case, you will find that you also have a /boot partition, holding your kernel(s) and
accompanying data files.

The rest of the hard disk(s) is generally divided in data partitions, although it may be that all of the
non−system critical data resides on one partition, for example when you perform a standard workstation
installation. When non−critical data is separated on different partitions, it usually happens following a set
pattern:

a partition for user programs (/usr)• 
a partition containing the users' personal data (/home)• 
a partition to store temporary data like print− and mail−queues (/var)• 
a partition for third party and extra software (/opt)• 

Once the partitions are made, you can only add more. Changing sizes or properties of existing partitions is
possible but not advisable.

The division of hard disks into partitions is determined by the system administrator. On larger systems, he or
she may even spread one partition over several hard disks, using the appropriate software. Most distributions
allow for standard setups optimized for workstations (average users) and for general server purposes, but also
accept customized partitions. During the installation process you can define your own partition layout using
either your distribution specific tool, which is usually a straight forward graphical interface, or fdisk, a
text−based tool for creating partitions and setting their properties.

A workstation or client installation is for use by mainly one and the same person. The selected software for
installation reflects this and the stress is on common user packages, such as nice desktop themes, development
tools, client programs for E−mail, multimedia software, web and other services. Everything is put together on
one large partition, swap space twice the amount of RAM is added and your generic workstation is complete,
providing the largest amount of disk space possible for personal use, but with the disadvantage of possible
data integrity loss during problem situations.

On a server, system data tends to be separate from user data. Programs that offer services are kept in a
different place than the data handled by this service. Different partitions will be created on such systems:
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a partition with all data necessary to boot the machine• 
a partition with configuration data and server programs• 
one or more partitions containing the server data such as database tables, user mails, an ftp archive
etc.

• 

a partition with user programs and applications• 
one or more partitions for the user specific files (home directories)• 
one or more swap partitions (virtual memory)• 

Servers usually have more memory and thus more swap space. Certain server processes, such as databases,
may require more swap space than usual; see the specific documentation for detailed information. For better
performance, swap is often divided into different swap partitions.

3.1.2.3. The df command

On a running system, information about the partitions can be displayed using the df command (which stands
for disk full or disk free). In Linux, df is the GNU version, and supports the −h or human readable option
which greatly improves readability. Note that commercial UNIX machines commonly have their own versions
of df and many other commands. Their behavior is usually the same, though GNU versions of common tools
often have more and better features.

The df command only displays information about active non−swap partitions. These can include partitions
from other networked systems, like in the example below where the home directories are mounted from a file
server on the network, a situation often encountered in corporate environments.

freddy:~> df −h
Filesystem          Size  Used Avail Use% Mounted on
/dev/hda8           496M  183M  288M  39% /
/dev/hda1           124M  8.4M  109M   8% /boot
/dev/hda5            19G   15G  2.7G  85% /opt
/dev/hda6           7.0G  5.4G  1.2G  81% /usr
/dev/hda7           3.7G  2.7G  867M  77% /var
fs1:/home           8.9G  3.7G  4.7G  44% /.automount/fs1/root/home

Partitions are mounted on a mount point, which can be almost any directory in the system. In the next section,
we'll take a closer look at all those directories.

3.1.3. More file system layout

3.1.3.1. Visual

For convenience, the Linux file system is usually thought of in a tree structure. On a standard Linux system
you will find the layout generally follows the scheme presented below.

Figure 3−1. Linux file system layout
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This is a layout from a RedHat system. Depending on the system admin, the operating system and the mission
of the UNIX machine, the structure may vary, and directories may be left out or added at will. The names are
not even required; they are only a convention.

The tree of the file system starts at the trunk or slash, indicated by a forward slash (/). This directory,
containing all underlying directories and files, is also called the root directory or "the root" of the file system.

Directories that are only one level below the root directory are often preceded by a slash, to indicate their
position and prevent confusion with other directories that could have the same name. When starting with a
new system, it is always a good idea to take a look in the root directory. Let's see what you could run into:

emmy:~> cd /
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emmy:/> ls
bin/   dev/  home/    lib/         misc/  opt/     root/  tmp/  var/
boot/  etc/  initrd/  lost+found/  mnt/   proc/    sbin/  usr/

Table 3−2. Subdirectories of the root directory

Directory Content

/bin Common programs, shared by the system, the system administrator and the users.

/boot
The startup files and the kernel, vmlinuz. In some recent distributions also grub data. Grub is
the GRand Unified Boot loader and is an attempt to get rid of the many different boot−loaders we
know today.

/dev
Contains references to all the CPU peripheral hardware, which are represented as files with
special properties.

/etc
Most important system configuration files are in /etc, this directory contains data similar to
those in the Control Panel in Windows

/home Home directories of the common users.

/initrd (on some distributions) Information for booting. Do not remove!

/lib Library files, includes files for all kinds of programs needed by the system and the users.

/lost+found
Every partition has a lost+found in its upper directory. Files that were saved during failures
are here.

/misc For miscellaneous purposes.

/mnt Standard mount point for external file systems, e.g. a CD−ROM or a digital camera.

/net Standard mount point for entire remote file systems

/opt Typically contains extra and third party software.

/proc

A virtual file system containing information about system resources. More information about the
meaning of the files in proc is obtained by entering the command man proc in a terminal
window. The file proc.txt discusses the virtual file system in detail. If you don't have a Linux
machine at hand on which to locate this file, it is included in Appendix E for your convenience.

/root
The administrative user's home directory. Mind the difference between /, the root directory and
/root, the home directory of the root user.

/sbin Programs for use by the system and the system administrator.

/tmp
Temporary space for use by the system, cleaned upon reboot, so don't use this for saving any
work!

/usr Programs, libraries, documentation etc. for all user−related programs.

/var
Storage for all variable files and temporary files created by users, such as log files, the mail
queue, the print spooler area, space for temporary storage of files downloaded from the Internet,
or to keep an image of a CD before burning it.

How can you find out which partition a directory is on? Using the df command with a dot (.) as an option
shows the partition the current directory belongs to, and informs about the amount of space used on this
partition:

sandra:/lib> df −h .
Filesystem            Size  Used Avail Use% Mounted on
/dev/hda7             980M  163M  767M  18% /
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As a general rule, every directory under the root directory is on the root partition, unless it has a separate entry
in the full listing from df (or df −h with no other options).

3.1.3.2. The file system in reality

For most users and for most common system administration tasks, it is enough to accept that files and
directories are ordered in a tree−like structure. The computer, however, doesn't understand a thing about trees
or tree−structures.

Every partition has its own file system. By imagining all those file systems together, we can form an idea of
the tree−structure of the entire system, but it is not as simple as that. In a file system, a file is represented by
an inode, a kind of serial number containing information about the actual data that makes up the file: to whom
this file belongs, and where is it located on the hard disk.

Every partition has its own set of inodes; throughout a system with multiple partitions, files with the same
inode number can exist.

Each inode describes a data structure on the hard disk, storing the properties of a file, including the physical
location of the file data. When a hard disk is initialized to accept data storage, usually during the initial system
installation process or when adding extra disks to an existing system, a fixed number of inodes per partition is
created. This number will be the maximum amount of files, of all types (including directories, special files,
links etc.) that can exist at the same time on the partition. We typically count on having 1 inode per 2 to 8
kilobytes of storage.

At the time a new file is created, it gets a free inode. In that inode is the following information:

Owner and group owner of the file.• 
File type (regular, directory, ...)• 
Permissions on the file Section 3.4.1• 
Date and time of creation, last read and change.• 
Date and time this information has been changed in the inode.• 
Number of links to this file (see later in this chapter).• 
File size• 
An address defining the actual location of the file data.• 

The only information not included in an inode, is the file name and directory. These are stored in the special
directory files. By comparing file names and inode numbers, the system can make up a tree−structure that the
user understands. Users can display inode numbers using the −i option to ls. The inodes have their own
separate space on the disk.

3.2. Orientation in the file system

3.2.1. The path

When you want the system to execute a command, you almost never have to give the full path to that
command. For example, we know that the ls command is in the /bin directory (check with which −als),
yet we don't have to enter the command /bin/ls for the computer to list the content of the current directory.

The PATH environment variable takes care of this. This variable lists those directories in the system where
executable files can be found, and thus saves the user a lot of typing and memorizing locations of commands.
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So the path naturally contains a lot of directories containing bin somewhere in their names, as the user below
demonstrates. The echo command is used to display the content ("$") of the variable PATH:

rogier:> echo $PATH
/opt/local/bin:/usr/X11R6/bin:/usr/bin:/usr/sbin/:/bin

In this example, the directories /opt/local/bin, /usr/X11R6/bin, /usr/bin, /usr/sbin and
/bin are subsequently searched for the required program. As soon as a match is found, the search is stopped,
even if not every directory in the path has been searched. This can lead to strange situations. In the first
example below, the user knows there is a program called sendsms to send an SMS message, and another user
on the same system can use it, but she can't. The difference is in the configuration of the PATH variable:

[jenny@blob jenny]$ sendsms
bash: sendsms: command not found
[jenny@blob jenny]$ echo $PATH
/bin:/usr/bin:/usr/bin/X11:/usr/X11R6/bin:/home/jenny/bin
[jenny@blob jenny]$ su − tony
Password:
tony:~>which sendsms
sendsms is /usr/local/bin/sendsms

tony:~>echo $PATH
/home/tony/bin.Linux:/home/tony/bin:/usr/local/bin:/usr/local/sbin:\
/usr/X11R6/bin:/usr/bin:/usr/sbin:/bin:/sbin

Note the use of the su (switch user) facility, which allows you to run a shell in the environment of another
user, on the condition that you know the user's password.

A backslash indicates the continuation of a line on the next, without an Enter separating one line from the
other.

In the next example, a user wants to call on the wc (word count) command to check the number of lines in a
file, but nothing happens and he has to break off his action using the Ctrl+C combination:

jumper:~> wc −l test

(Ctrl−C)
jumper:~> which wc
wc is hashed (/home/jumper/bin/wc)

jumper:~> echo $PATH
/home/jumper/bin:/usr/local/bin:/usr/local/sbin:/usr/X11R6/bin:
/usr/bin:/usr/sbin:/bin:/sbin

The use of the which command shows us that this user has a bin−directory in his home directory, containing
a program that is also called wc. Since the program in his home directory is found first when searching the
paths upon a call for wc, this "home−made" program is executed, with input it probably doesn't understand, so
we have to stop it. To resolve this problem there are several ways (there are always several ways to solve a
problem in UNIX/Linux): one answer could be to rename the user's wc program, or the user can give the full
path to the exact command he wants, which can be found by using the −a to the which command:

jumper:~> /usr/bin/wc −l test
       10 test
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If the user uses programs in the other directories more frequently, he can change his path to look in his own
directories last:

jumper:~> export PATH=/usr/local/bin:/usr/local/sbin:/usr/X11R6/bin:\
/usr/bin:/usr/sbin:/bin:/sbin:/home/jumper/bin

Changes are not permanent!

Note that when using the export command in a shell, the changes are temporary and only valid for this
session (until you log out). Opening new sessions, even while the current one is still running, will not
result in a new path in the new session. We will see in Section 7.2 how we can make these kinds of
changes to the environment permanent, adding these lines to the shell configuration files.

3.2.2. Absolute and relative paths

A path, which is the way you need to follow in the tree structure to reach a given file, can be described as
starting from the trunk of the tree (the / or root directory). In that case, the path starts with a slash and is called
an absolute path, since there can be no mistake: only one file on the system can comply.

In the other case, the path doesn't start with a slash and confusion is possible between ~/bin/wc (in the
user's home directory) and bin/wc in /usr, from the previous example. Paths that don't start with a slash
are always relative.

In relative paths we also use the . and .. indications for the current and the parent directory. A couple of
practical examples:

When you want to compile source code, the installation documentation often instructs you to run the
command ./configure, which runs the configure program located in the current directory (that came
with the new code), as opposed to running another configure program elsewhere on the system.

• 

In HTML files, relative paths are often used to make a set of pages easily movable to another place:
<img alt="Garden with trees" src="../images/garden.jpg">

• 

Notice the difference one more time:
theo:~> ls /mp3
ls: /mp3: No such file or directory
theo:~>ls mp3/
oriental/  pop/  sixties/

• 

3.2.3. The most important files and directories

3.2.3.1. The kernel

The kernel is the heart of the system. It manages the communication between the underlying hardware and the
peripherals. The kernel also makes sure that processes and daemons (server processes) are started and stopped
at the exact right times. The kernel has a lot of other important tasks, so many that there is a special
kernel−development mailing list on this subject only, where huge amounts of information are shared. It would
lead us too far to discuss the kernel in detail. For now it suffices to know that the kernel is the most important
file on the system.
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3.2.3.2. The shell

3.2.3.2.1. What is a shell?

When I was looking for an appropriate explanation on the concept of a shell, it gave me more trouble than I
expected. All kinds of definitions are available, ranging from the simple comparison that "the shell is the
steering wheel of the car", to the vague definition in the Bash manual which says that "bash is an
sh−compatible command language interpreter," or an even more obscure expression, "a shell manages the
interaction between the system and its users". A shell is much more than that.

A shell can best be compared with a way of talking to the computer, a language. Most users do know that
other language, the click−and−point language of the desktop. But in that language the user is treated as a
baby, asked to pick from what is presented to him.

The shell, on the other hand, is an advanced way of communicating with the system, because it allows for
conversation and taking initiative. Both partners in the communication are equal, so new ideas can be tested.
The shell allows the user to handle a system in a flexible way, and is also a means of stress reduction. Who
does not appreciate being treated like an adult?

3.2.3.2.2. Shell types

Just like people know different languages and dialects, the computer knows different shell types:

sh or Bourne Shell: the original shell still used on UNIX systems and in UNIX related environments.
This is the basic shell, a small program with few features. When in POSIX−compatible mode, bash
will emulate this shell.

• 

bash or Bourne Again shell: the standard GNU shell, intuitive and flexible. Probably most advisable
for beginning users while being at the same time a powerful tool for the advanced and professional
user. On Linux, bash is the standard shell for common users. This shell is a so−called superset of the
Bourne shell, a set of add−ons and plug−ins. This means that the Bourne Again shell is compatible
with the Bourne shell: commands that work in sh, also work in bash. However, the reverse is not
always the case. All examples and exercises in this book use bash.

• 

csh or C shell: the syntax of this shell resembles that of the C programming language. Sometimes
asked for by programmers.

• 

tcsh or Turbo C shell: a superset of the common C shell, enhancing user−friendliness and speed.• 
ksh or the Korn shell: sometimes appreciated by people with a UNIX background. A superset of the
Bourne shell; with standard configuration a nightmare for beginning users.

• 

The file /etc/shells gives an overview of known shells on a Linux system:

mia:~> cat /etc/shells
/bin/bash
/bin/sh
/bin/tcsh
/bin/csh

Fake Bourne shell

Note that /bin/sh is usually a link to Bash, which will execute in Bourne shell compatible mode when
called on this way.

Your default shell is set in the /etc/passwd file, like this line for user mia:
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mia:L2NOfqdlPrHwE:504:504:Mia Maya:/home/mia:/bin/bash

To switch from one shell to another, just enter the name of the new shell in the active terminal. The system
finds the directory where the name occurs using the PATH settings, and since a shell is an executable file
(program), the current shell activates it and it gets executed. A new prompt is usually shown, because each
shell has its typical appearance:

mia:~> tcsh
[mia@post21 ~]$

3.2.3.2.3. Which shell am I using?

If you don't know which shell you are using, either check the line for your account in /etc/passwd or type
the command

echo $SHELL

3.2.3.3. Your home directory

Your home directory is your default destination when connecting to the system. In most cases it is a
subdirectory of /home, though this may vary. Your home directory may be located on the hard disk of a
remote file server; in that case your home directory may be found in /nethome/your_user_name. In
another case the system administrator may have opted for a less comprehensible layout and your home
directory may be on /disk6/HU/07/jgillard.

Whatever the path to your home directory, you don't have to worry too much about it. The correct path to your
home directory is stored in the HOME environment variable, in case some program needs it. With the echo
command you can display the content of this variable:

orlando:~> echo $HOME
/nethome/orlando

You can do whatever you like in your home directory. You can put as many files in as many directories as you
want, although the total amount of data and files is naturally limited because of the hardware and size of the
partitions, and sometimes because the system administrator has applied a quota system. Limiting disk usage
was common practice when hard disk space was still expensive. Nowadays, limits are almost exclusively
applied in large environments. You can see for yourself if a limit is set using the quota command:

pierre@lamaison:/> quota −v
Diskquotas for user pierre (uid 501): none

In case quotas have been set, you get a list of the limited partitions and their specific limitations. Exceeding
the limits may be tolerated during a grace period with fewer or no restrictions at all. Detailed information can
be found using the info quota or man quota commands.

Your home directory is indicated by a tilde (~), shorthand for /path_to_home/user_name. This same
path is stored in the HOME variable, so you don't have to do anything to activate it. A simple application:
switch from /var/music/albums/arno/2001 to images in your home directory using one elegant
command:

rom:/var/music/albums/arno/2001> cd ~/images
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rom:~/images> pwd
/home/rom/images

Later in this chapter we will talk about the commands for managing files and directories in order to keep your
home directory tidy.

3.2.4. The most important configuration files

As we mentioned before, most configuration files are stored in the /etc directory. Content can be viewed
using the cat command, which sends text files to the standard output (usually your monitor). The syntax is
straight forward:

cat file1 file2 ... fileN

In this section we try to give an overview of the most common configuration files. This is certainly not a
complete list. Adding extra packages may also add extra configuration files in /etc. When reading the
configuration files, you will find that they are usually quite well commented and self−explanatory. Some files
also have man pages which contain extra documentation, such as man aliases.

Table 3−3. Most common configuration files

File Information/service

aliases

Mail aliases file for use with the Sendmail mail server. Running a mail
server on each and every system has long been common use in the
UNIX world, and almost every Linux distribution still comes with a
Sendmail package. In this file local user names are matched with real
names as they occur in E−mail addresses, or with other local addresses.

bashrc
The system−wide configuration file for the Bourne Again SHell.
Defines functions and aliases for all users. Other shells may have their
own system−wide config files, like cshrc.

crontab and the cron.*
directories

Configuration of tasks that need to be executed periodically − backups,
updates of the system databases, cleaning of the system, rotating logs
etc.

default Default options for certain commands, such as useradd.

filesystems Known file systems: ext3, vfat, iso9660 etc.

fstab Lists partitions and their mount points.

ftp*
Configuration of the ftp−server: who can connect, what parts of the
system are accessible etc.

group
Configuration file for user groups. Use the shadow utilities groupadd,
groupmod and groupdel to edit this file. Edit manually only if you
really know what you are doing.

grub.conf Boot information.

hosts
A list of machines that can be contacted using the network, but without
the need for a domain name service. This has nothing to do with the
system's network configuration, which is done in /etc/sysconfig.

httpd Config files for the Apache web server.

Introduction to Linux

Chapter 3. About files and the file system 42



inittab Information for booting: mode, number of text consoles etc.

issue Information about the distribution (release version and/or kernel info).

ld.so.conf Locations of library files.

lilo.conf, silo.conf,
aboot.conf etc.

Boot information for the LInux LOader, the system for booting that was
in use before Lilo changed to GRUB.

logrotate.*
Rotation of the logs, a system preventing the collection of huge amounts
of log files.

mail Directory containing instructions for the behavior of the mail server.

modules.conf Configuration of modules that enable special features (drivers).

motd
Message Of The Day: Shown to everyone who connects to the system
(in text mode), may be used by the system admin to announce system
services/maintenance etc.

mtab Currently mounted file systems. It is advised to never edit this file.

nsswitch.conf
Order in which to contact the name resolvers when a process demands
resolving of a host name.

pam.d Configuration of authentication modules.

passwd
Lists local users. Use the shadow utilities useradd, usermod and
userdel to edit this file. Edit manually only when you really know what
you are doing.

printcap
Outdated but still frequently used printer configuration file. Don't edit
this manually unless you really know what you are doing.

profile
System wide configuration of the shell environment: variables, default
properties of new files, limitation of resources etc.

rc* Directories defining active services for each run level.

resolv.conf Order in which to contact DNS servers (Domain Name Servers only).

sendmail.cf Main config file for the Sendmail server.

services Connections accepted by this machine (open ports).

sndconfig and sound Configuration of the sound card and sound events.

ssh Directory containing the config files for secure shell client and server.

sysconfig
Directory containing the system configuration files: mouse, keyboard,
network, desktop, system clock, power management etc. (specific to
RedHat)

X11

Settings for the graphical server, X. RedHat uses XFree, which is
reflected in the name of the main configuration file, XFree86Config.
Also contains the general directions for the window managers available
on the system, for example gdm, fvwm, twm, etc.

xinetd.*
Configuration files for Internet services that are run from the system's
(extended) Internet services daemon (servers that don't run an
independent daemon).

Throughout this guide we will learn more about these files and study some of them in detail.
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3.2.5. The most common devices

Devices, generally every peripheral attachment of a PC that is not the CPU itself, is presented to the system as
an entry in the /dev directory. One of the advantages of this UNIX−way of handling devices is that neither
the user nor the system has to worry much about the specification of devices.

Users that are new to Linux or UNIX in general are often overwhelmed by the amount of new names and
concepts they have to learn. That is why a list of common devices is included in this introduction.

Table 3−4. Common devices

Name Device

cdrom CD drive

console Special entry for the currently used console.

cua* Serial ports

dsp* Devices for sampling and recording

fd*
Entries for most kinds of floppy drives, the default is
/dev/fd0H1440, a floppy drive for 1.44 MB floppies.

hd[a−t][1−16]
Standard support for IDE drives with maximum amount of
partitions each.

ir* Infrared devices

isdn* Management of ISDN connections

js* Joystick(s)

lp* Printers

mem Memory

midi* midi player

mixer* and music Idealized model of a mixer (combines or adds signals)

modem Modem

mouse (also msmouse, logimouse,
psmouse

All kinds of mouses

null Bottomless garbage can

par* Entries for parallel port support

pty* Pseudo terminals

radio* For Radio Amateurs (HAMs).

ram* boot device

sd* SCSI disks with their partitions

sequencer
For audio applications using the synthesizer features of the
sound card (MIDI−device controller)

tty* Virtual consoles simulating vt100 terminals.

usb* USB card and scanner

video* For use with a graphics card supporting video.
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3.2.6. The most common variable files

In the /var directory we find a set of directories for storing specific non−constant data (as opposed to the ls
program or the system configuration files, which change relatively infrequently or never at all). All files that
change frequently, such as log files, mailboxes, lock files, spoolers etc. are kept in a subdirectory of /var.

As a security measure these files are usually kept in separate parts from the main system files, so we can keep
a close eye on them and set stricter permissions where necessary. A lot of these files also need more
permissions than usual, like /var/tmp, which needs to be writable for everyone. A lot of user activity might
be expected here, which might even be generated by anonymous Internet users connected to your system. This
is one reason why the /var directory, including all its subdirectories, is usually on a separate partition. This
way, there is for instance no risk that a mail bomb, for instance, fills up the rest of the file system, containing
more important data such as your programs and configuration files.

/var/tmp and /tmp

Files in /tmp can be deleted without notice, by regular system tasks or because of a system reboot. On
some (customized) systems, also /var/tmp might behave unpredictably. Nevertheless, since this is not
the case by default, we advise to use the /var/tmp directory for saving temporary files. When in
doubt, check with your system administrator. If you manage your own system, you can be reasonably
sure that this is a safe place if you did not consciously change settings on /var/tmp (as root, a normal
user can not do this).

Whatever you do, try to stick to the privileges granted to a normal user − don't go saving files directly
under the root (/) of the file system, don't put them in /usr or some subdirectory or in another reserved
place. This pretty much limits your access to safe file systems.

One of the main security systems on a UNIX system, which is naturally implemented on every Linux machine
as well, is the log−keeping facility, which logs all user actions, processes, system events etc. The
configuration file of the so−called syslogdaemon determines which and how long logged information will be
kept. The default location of all logs is /var/log, containing different files for access log, server logs,
system messages etc.

In /var we typically find server data, which is kept here to separate it from critical data such as the server
program itself and its configuration files. A typical example on Linux systems is /var/www, which contains
the actual HTML pages, scripts and images that a web server offers. The FTP−tree of an FTP server (data that
can be downloaded by a remote client) is also best kept in one of /var's subdirectories. Because this data is
publicly accessible and often changeable by anonymous users, it is safer to keep it here, away from partitions
or directories with sensitive data.

On most workstation installations, /var/spool will at least contain an at and a cron directory,
containing scheduled tasks. In office environments this directory usually contains lpd as well, which holds
the print queue(s) and further printer configuration files, as well as the printer log files.

On server systems we will generally find /var/spool/mail, containing incoming mails for local users,
sorted in one file per user, the user's "inbox". A related directory is mqueue, the spooler area for unsent mail
messages. These parts of the system can be very busy on mail servers with a lot of users. News servers also
use the /var/spool area because of the enormous amounts of messages they have to process.

The /var/lib/rpm directory is specific to RPM−based (RedHat Package Manager) distributions; it is
where RPM package information is stored.
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3.3. Manipulating files

3.3.1. Viewing file properties

3.3.1.1. More about ls

Besides the name of the file, ls can give a lot of other information, such as the file type, as we already
discussed. It can also show permissions on a file, file size, inode number, creation date and time, owners and
amount of links to the file. With the −a option to ls, files that are normally hidden from view can be displayed
as well. These are files that have a name starting with a dot. A couple of typical examples include the
configuration files in your home directory. When you've worked with a certain system for a while, you will
notice that tens of files and directories have been created that are not automatically listed in a directory index.
Next to that, every directory contains a file named just dot (.) and one with two dots (..), which are used in
combination with their inode number to determine the directory's position in the file system's tree structure.

You should really read the Info pages about ls, since it is a very common command with a lot of useful
options. Options can be combined, as is the case with most UNIX commands and their options. A common
combination is ls −al; it shows a long list of files and their properties as well as the destinations that any
symbolic links point to. ls −latr displays the same files, only now in reversed order of the last change, so
that the file changed most recently occurs at the bottom of the list. Here are a couple of examples:

krissie:~/mp3> ls
Albums/  Radio/  Singles/  gene/  index.html

krissie:~/mp3> ls −a
./   .thumbs  Radio     gene/
../  Albums/  Singles/  index.html

krissie:~/mp3> ls −l Radio/
total 8
drwxr−xr−x    2 krissie krissie  4096 Oct 30  1999 Carolina/
drwxr−xr−x    2 krissie krissie  4096 Sep 24  1999 Slashdot/

krissie:~/mp3> ls −ld Radio/
drwxr−xr−x    4 krissie krissie  4096 Oct 30  1999 Radio/

krissie:~/mp3> ls −ltr
total 20
drwxr−xr−x    4 krissie krissie  4096 Oct 30  1999 Radio/
−rw−r−−r−−    1 krissie krissie   453 Jan  7  2001 index.html
drwxrwxr−x   30 krissie krissie  4096 Oct 20 17:32 Singles/
drwxr−xr−x    2 krissie krissie  4096 Dec  4 23:22 gene/
drwxrwxr−x   13 krissie krissie  4096 Dec 21 11:40 Albums/

On most Linux versions ls is aliased to color−ls by default. This feature allows to see the file type without
using any options to ls. To achieve this, every file type has its own color. The standard scheme is in
/etc/DIR_COLORS:

Table 3−5. Color−ls default color scheme

Color File type
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blue directories

red compressed archives

white text files

pink images

cyan links

yellow devices

green executables

flashing redbroken links

More information is in the man page. The same information was in earlier days displayed using suffixes to
every non−standard file name. For mono−color use (like printing a directory listing) and for general
readability, this scheme is still in use:

Table 3−6. Default suffix scheme for ls

Character File type

nothing regular file

/ directory

* executable file

@ link

= socket

| named pipe

A description of the full functionality and features of the ls command can be read with info ls.

3.3.1.2. More tools

To find out more about the kind of data we are dealing with, we use the file command. By applying certain
tests that check properties of a file in the file system, magic numbers and language tests, file tries to make an
educated guess about the format of a file. Some examples:

mike:~> file Documents/
Documents/: directory

mike:~> file high−tech−stats.pdf
high−tech−stats.pdf: PDF document, version 1.2

mike:~> file Nari−288.rm
Nari−288.rm: RealMedia file

mike:~> file bijlage10.sdw
bijlage10.sdw: Microsoft Office Document

mike:~> file logo.xcf
logo.xcf: GIMP XCF image data, version 0, 150 x 38, RGB Color

mike:~> file cv.txt
cv.txt: ISO−8859 text

mike:~> file image.png
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image.png: PNG image data, 616 x 862, 8−bit grayscale, non−interlaced

mike:~> file figure
figure: ASCII text

mike:~> file me+tux.jpg
me+tux.jpg: JPEG image data, JFIF standard 1.01, resolution (DPI),
            "28 Jun 1999", 144 x 144

mike:~> file 42.zip.gz
42.zip.gz: gzip compressed data, deflated, original filename,
         `42.zip', last modified: Thu Nov  1 23:45:39 2001, os: Unix

mike:~> file vi.gif
vi.gif: GIF image data, version 89a, 88 x 31

mike:~> file slide1
slide1: HTML document text

mike:~> file template.xls
template.xls: Microsoft Office Document

mike:~> file abook.ps
abook.ps: PostScript document text conforming at level 2.0

mike:~> file /dev/log
/dev/log: socket

mike:~> file /dev/hda
/dev/hda: block special (3/0)

The file command has a series of options, among others the −z option to look into compressed files. See info
file for a detailed description. Keep in mind that the results of file are not absolute, it is only a guess. In
other words, file can be tricked.

Why all the fuss about file types and formats?

Shortly, we will discuss a couple of command−line tools for looking at plain text files. These tools will
not work when used on the wrong type of files. In the worst case, they will crash your terminal and/or
make a lot of beeping noises. If this happens to you, just close the terminal session and start a new one.
But try to avoid it, because it is usually very disturbing for other people.

3.3.2. Creating and deleting files and directories

3.3.2.1. Making a mess...

... Is not a difficult thing to do. Today almost every system is networked, so naturally files get copied from
one machine to another. And especially when working in a graphical environment, creating new files is a
piece of cake and is often done without the approval of the user. To illustrate the problem, here's the full
content of a new user's directory, created on a standard RedHat system:

[newuser@blob user]$ ls −al
total 32
drwx−−−−−−   3 user     user        4096 Jan 16 13:32 .
drwxr−xr−x   6 root     root        4096 Jan 16 13:32 ..
−rw−r−−r−−   1 user     user      24 Jan 16 13:32 .bash_logout
−rw−r−−r−−   1 user     user     191 Jan 16 13:32 .bash_profile
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−rw−r−−r−−   1 user     user     124 Jan 16 13:32 .bashrc
drwxr−xr−x   3 user     user    4096 Jan 16 13:32 .kde
−rw−r−−r−−   1 user     user    3511 Jan 16 13:32 .screenrc
−rw−−−−−−−   1 user     user      61 Jan 16 13:32 .xauthDqztLr

On first sight, the content of a "used" home directory doesn't look that bad either:

olduser:~> ls
app−defaults/ crossover/   Fvwm@     mp3/      OpenOffice.org638/
articles/     Desktop/     GNUstep/  Nautilus/ staroffice6.0/
bin/          Desktop1/    images/   nqc/      training/
brol/         desktoptest/ Machines@ ns_imap/  webstart/
C/            Documents/   mail/     nsmail/   xml/
closed/       Emacs@       Mail/     office52/ Xrootenv.0

But when all the directories and files starting with a dot are included, there are 185 items in this directory.
This is because most applications have their own directories and/or files, containing user−specific settings, in
the home directory of that user. Usually these files are created the first time you start an application. In some
cases you will be notified when a non−existent directory needs to be created, but most of the time everything
is done automatically.

Furthermore, new files are created seemingly continuously because users want to save files, keep different
versions of their work, use Internet applications, and download files and attachments to their local machine. It
doesn't stop. It is clear that one definitely needs a scheme to keep an overview on things.

In the next section, we will discuss our means of keeping order. We only discuss text tools available to the
shell, since the graphical tools are very intuitive and have the same look and feel as the well known
point−and−click MS Windows−style file managers, including graphical help functions and other features you
expect from this kind of applications. The following list is an overview of the most popular file managers for
GNU/Linux. Most file managers can be started from the menu of your desktop manager, or by clicking your
home directory icon, or from the command line, issuing these commands:

nautilus: The default file manager in Gnome, the GNU desktop. Excellent documentation about
working with this tool can be found at http://www.gnome.org.

• 

konqueror: The file manager typically used on a KDE desktop. The handbook is at
http://docs.kde.org.

• 

mc: Midnight Commander, the Unix file manager after the fashion of Norton Commander. All
documentation available from http://gnu.org/directory/ or a mirror, such as http://www.ibiblio.org.

• 

These applications are certainly worth giving a try and usually impress newcomers to Linux, if only because
there is such a wide variety: these are only the most popular tools for managing directories and files, and
many other projects are being developed. Now let's find out about the internals and see how these graphical
tools use common UNIX commands.

3.3.2.2. The tools

3.3.2.2.1. Creating directories

A way of keeping things in place is to give certain files specific default locations by creating directories and
subdirectories (or folders and sub−folders if you wish). This is done with the mkdir command:

richard:~> mkdir archive
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richard:~> ls −ld archive
drwxrwxrwx  2 richard richard           4096 Jan 13 14:09 archive/

Creating directories and subdirectories in one step is done using the −p option:

richard:~> cd archive

richard:~/archive> mkdir 1999 2000 2001

richard:~/archive> ls
1999/  2000/  2001/

richard:~/archive> mkdir 2001/reports/Restaurants−Michelin/
mkdir: cannot create directory `2001/reports/Restaurants−Michelin/':
No such file or directory

richard:~/archive> mkdir −p 2001/reports/Restaurants−Michelin/

richard:~/archive> ls 2001/reports/
Restaurants−Michelin/

If the new file needs other permissions than the default file creation permissions, the new access rights can be
set in one move, still using the mkdir command, see the Info pages for more. We are going to discuss access
modes in the next section on File Security.

The name of a directory has to comply with the same rules as those applied on regular file names. One of the
most important restrictions is that you can't have two files with the same name in one directory (but keep in
mind that Linux is, like UNIX, a case sensitive operating system). There are virtually no limits on the length
of a file name, but it is usually kept shorter than 80 characters, so it can fit on one line of a terminal. You can
use any character you want in a file name, although it is advised to exclude characters that have a special
meaning to the shell. When in doubt, check with Appendix C.

3.3.2.2.2. Moving files

Now that we have properly structured our home directory, it is time to clean up unclassified files using the mv
command:

richard:~/archive> mv ../report[1−4].doc reports/Restaurants−Michelin/

This command is also applicable when renaming files:

richard:~> ls To_Do
−rw−rw−r−−    1 richard richard      2534 Jan 15 12:39 To_Do

richard:~> mv To_Do done

richard:~> ls −l done
−rw−rw−r−−    1 richard richard      2534 Jan 15 12:39 done

It is clear that only the name of the file changes. All other properties remain the same.

Detailed information about the syntax and features of the mv command can be found in the man or Info pages.
The use of this documentation should always be your first reflex when confronted with a problem. The answer
to your problem is likely to be in the system documentation. Even experienced users read man pages every
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day, so beginning users should read them all the time. After a while, you will get to know the most common
options to the common commands, but you will still need the documentation as a primary source of
information. Note that the information contained in the HOWTOs, FAQs, man pages and such is slowly being
merged into the Info pages, which are today the most up−to−date source of online (as in readily available on
the system) documentation.

3.3.2.2.3. Copying files

Copying files and directories is done with the cp command. A useful option is recursive copy (copy all
underlying files and subdirectories), using the −R option to cp. The general syntax is

cp [−R] fromfile tofile

As an example the case of user newguy, who wants the same Gnome desktop settings user oldguy has. One
way to solve the problem is to copy the settings of oldguy to the home directory of newguy:

victor:~> cp −R ../oldguy/.gnome/ .

This gives some errors involving file permissions, but all the errors have to do with private files that newguy
doesn't need anyway. We will discuss in the next part how to change these permissions in case they really are
a problem.

3.3.2.2.4. Removing files

Use the rm command to remove single files, rmdir to remove empty directories. (Use ls −a to check whether
a directory is empty or not). The rm command also has options for removing non−empty directories with all
their subdirectories, read the Info pages for these rather dangerous options.

How empty can a directory be?

It is normal that the directories . (dot) and .. (dot−dot) can't be removed, since they are also necessary in
an empty directory to determine the directories ranking in the file system hierarchy.

On Linux, just like on UNIX, there is no garbage can − at least not for the shell, although there are plenty of
solutions for graphical use. So once removed, a file is really gone, and there is generally no way to get it back
unless you have backups, or you are really fast and have a real good system administrator. To protect the
beginning user from this malice, the interactive behavior of the rm, cp and mv commands can be activated
using the −i option. In that case the system won't immediately act upon request. Instead it will ask for
confirmation, so it takes an additional click on the Enter key to inflict the damage:

mary:~> rm −ri archive/
rm: descend into directory `archive'? y
rm: descend into directory `archive/reports'? y
rm: remove directory `archive/reports'? y
rm: descend into directory `archive/backup'? y
rm: remove `archive/backup/sysbup200112.tar'? y
rm: remove directory `archive/backup'? y
rm: remove directory `archive'? y

We will discuss how to make this option the default in Chapter 7, which discusses customizing your shell
environment.
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3.3.3. Finding files

3.3.3.1. Using shell features

In the example on moving files we already saw how the shell can manipulate multiple files at once. In that
example, the shell finds out automatically what the user means by the requirements between the square braces
"[" and "]". The shell can substitute ranges of numbers and upper or lower case characters alike. It also
substitutes as many characters as you want with an asterisk, and only one character with a question mark.

All sorts of substitutions can be used simultaneously; the shell is very logical about it. The Bash shell, for
instance, has no problem with expressions like ls dirname/*/*/*[2−3].

In other shells, the asterisk is commonly used to minimize the efforts of typing: people would enter cd dir*
instead of cd directory. In Bash however, this is not necessary because the GNU shell has a feature called
file name completion. It means that you can type the first few characters of a command (anywhere) or a file
(in the current directory) and if no confusion is possible, the shell will find out what you mean. For example
in a directory containing many files, you can check if there are any files beginning with the letter A just by
typing ls A and pressing the Tab key twice, rather than pressing Enter. If there is only one file starting with
"A", this file will be shown as the argument to ls (or any shell command, for that matter) immediately.

3.3.3.2. Which

A very simple way of looking up files is using the which command, to look in the directories listed in the
user's search path for the required file. Of course, since the search path contains only paths to directories
containing executable programs, which doesn't work for ordinary files. The which command is useful when
troubleshooting "Command not Found" problems. In the example below, user tina can't use the acroread
program, while her colleague has no troubles whatsoever on the same system. The problem is similar to the
PATH problem in the previous part: Tina's colleague tells her that he can see the required program in
/opt/acroread/bin, but this directory is not in her path:

tina:~> which acroread
/usr/bin/which: no acroread in (/bin:/usr/bin:/usr/bin/X11)

The problem can be solved by giving the full path to the command to run, or by re−exporting the content of
the PATH variable:

tina:~> export PATH=$PATH:/opt/acroread/bin

tina:~> echo $PATH
/bin:/usr/bin:/usr/bin/X11:/opt/acroread/bin

Using the which command also checks to see if a command is an alias for another command:

gerrit:~> which −a ls
ls is aliased to `ls −F −−color=auto'
ls is /bin/ls

gerrit:~> which −a which
which is aliased to `type'
which is /usr/bin/which

gerrit:~> which type
type is a shell builtin
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This actually means that which is built−in in the shell, but that there is also a which "stand alone version".
The shell built−in version precedes the which in /usr/bin, which is still there for compatibility with
UNIX.

3.3.3.3. Find and locate

These are the real tools, used when searching other paths beside those listed in the search path. The find tool,
known from UNIX, is very powerful, which may be the cause of a somewhat more difficult syntax. GNU
find, however, deals with the syntax problems. This command not only allows you to search file names, it can
also accept file size, date of last change and other file properties as criteria for a search. The most common use
is for finding file names:

find <path> −name <searchstring>

This can be interpreted as "Look in all files and subdirectories contained in a given path, and print the names
of the files containing the search string in their name" (not in their content).

Another application of find is for searching files of a certain size, as in the example below, where user peter
wants to find all files in the current directory or one of its subdirectories, that are bigger than 5 MB:

peter:~> find . −size +5000k
psychotic_chaos.mp3

If you dig in the man pages, you will see that find can also perform operations on the found files. A common
example is removing files. It is best to first test without the −exec option that the correct files are selected,
after that the command can be rerun to delete the selected files. Below, we search for files ending in .tmp:

peter:~> find . −name "*.tmp" −exec rm {} \;

peter:~>

Optimize!

This command will call on rm as many times as a file answering the requirements is found. In the worst
case, this might be thousands or millions of times. This is quite a load on your system.

A more realistic way of working would be the use of a pipe (|) and the xargs tool with rm as an
argument. This way, the rm command is only called when the command line is full, instead of for every
file. See Chapter 5 for more on using I/O redirection to ease everyday tasks.

Later on (in 1999 according to the man pages, after 20 years of find), locate was developed. This program is
easier to use, but more restricted than find, since its output is based on a file index database that is updated
only once every day. On the other hand, a search in the locate database is less time− and CPU−consuming
than a search with find.

Most Linux distributions use slocate these days, security enhanced locate, the modern version of locate that
prevents users from getting output they have no right to read. The files in root's home directory are such an
example, these are not normally accessible to the public. A user who wants to find someone who knows about
the C−shell may issue the command locate .cshrc, to display all users who have a customized
configuration file for the C shell. Supposing the users root and jenny are running C shell, then only the file
/home/jenny/.cshrc will be displayed, and not the one in root's home directory. On most systems,
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locate is a symbolic link to the slocate program:

billy:~> ls −l /usr/bin/locate
lrwxrwxrwx 1 root slocate  7 Oct 28 14:18 /usr/bin/locate −> slocate*

User tina could have used locate to find the application she wanted:

tina:~> locate acroread
/usr/share/icons/hicolor/16x16/apps/acroread.png
/usr/share/icons/hicolor/32x32/apps/acroread.png
/usr/share/icons/locolor/16x16/apps/acroread.png
/usr/share/icons/locolor/32x32/apps/acroread.png
/usr/local/bin/acroread
/usr/local/Acrobat4/Reader/intellinux/bin/acroread
/usr/local/Acrobat4/bin/acroread

Directories that don't contain the name bin can't contain the program − they don't contain executable files.
There are three possibilities left. The file in /usr/local/bin is the one tina would have wanted: it is a
link to the shell script that starts the actual program:

tina:~> file /usr/local/bin/acroread
/usr/local/bin/acroread: symbolic link to ../Acrobat4/bin/acroread

tina:~> file /usr/local/Acrobat4/bin/acroread
/usr/local/Acrobat4/bin/acroread: Bourne shell script text executable

tina:~> file /usr/local/Acrobat4/Reader/intellinux/bin/acroread
/usr/local/Acrobat4/Reader/intellinux/bin/acroread: ELF 32−bit LSB 
executable, Intel 80386, version 1, dynamically linked (uses 
shared libs), not stripped

In order to keep the path as short as possible, so the system doesn't have to search too long every time a user
wants to execute a command, we add /usr/local/bin to the path and not the other directories, which
only contain the binary files of one specific program, while /usr/local/bin contains other useful
programs as well.

Again, a description of the full features of find and locate can be found in the Info pages.

3.3.3.4. The grep command

3.3.3.4.1. General line filtering

A simple but powerful program, grep is used for filtering input lines and returning certain patterns to the
output. There are literally thousands of applications for the grep program. In the example below, jerry uses
grep to see how he did the thing with find:

jerry:~> grep −a find .bash_history
find . −name userinfo
man find
find ../ −name common.cfg

Search history

Also useful in these cases is the search function in bash, activated by pressing Ctrl+R at once, such as
in the example where we want to check how we did that last find again:
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thomas ~> ^R
(reverse−i−search)`find': find `/home/thomas` −name *.xml

Type your search string at the search prompt. The more characters you type, the more restricted the
search gets. This reads the command history for this shell session (which is written to
.bash_history in your home directory when you quit that session). The most recent occurrence of
your search string is shown. If you want to see previous commands containing the same string, type
Ctrl+R again.

See the Info pages on bash for more.

All UNIXes with just a little bit of decency have an online dictionary. So does Linux. The dictionary is a list
of known words in a file named words, located in /usr/share/dict. To quickly check the correct
spelling of a word, no graphical application is needed:

william:~> grep pinguin /usr/share/dict/words

william:~> grep penguin /usr/share/dict/words
penguin
penguins

Who is the owner of that home directory next to mine? Hey, there's his telephone number!

lisa:~> grep gdbruyne /etc/passwd
gdbruyne:x:981:981:Guy Debruyne, tel 203234:/home/gdbruyne:/bin/bash

And what was the E−mail address of Arno again?

serge:~/mail> grep −i arno *
sent−mail: To: <Arno.Hintjens@celeb.com>
sent−mail: On Mon, 24 Dec 2001, Arno.Hintjens@celeb.com wrote:

find and locate are often used in combination with grep to define some serious queries. For more
information, see Chapter 5 on I/O redirection.

3.3.3.4.2. Special characters

Characters that have a special meaning to the shell have to be escaped. The escape character in Bash is
backslash, as in most shells; this takes away the special meaning of the following character. The shell knows
about quite some special characters, among the most common /, ., ? and *. A full list can be found in the Info
pages and documentation for your shell. For instance, say that you want to display the lines containing
"searchstring*" (where * matches the asterisk character) instead of any lines containing the string
"searchstring"* (where * matches any amount of any character), you issue the command

grep "searchstring\*" file(s)

Finding the string "e.g." in a file will report all lines containing any character in the second and forth position
of the search string. If you escape the dots, you will find the occurrences of the string representing the
abbreviation for "example given":

grep "e\.g\." file
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More in the grep Info pages.

3.3.4. More ways to view file content

3.3.4.1. General

Apart from cat, which really doesn't do much more than sending files to the standard output, there are other
tools to view file content.

The easiest way of course would be to use graphical tools instead of command line tools. In the introduction
we already saw a glimpse of an office application, OpenOffice. Other examples are the GIMP (start up with
gimp from the command line), the GNU Image Manipulation Program; xpdf to view Portable Document
Format files (PDF); GhostView (gv) for viewing PostScript files; the Mozilla Project, links (a text mode
browser), Konqueror, Opera and many others for web content; XMMS, CDplay and others for multi−media
file content; AbiWord, Gnumeric, KOffice etc. for all kinds of office applications and so on. There are
thousands of Linux applications; to list them all would take days.

Instead we keep concentrating on shell− or text−mode applications, which form the basics for all other
applications. These commands work best in a text environment on files containing text. When in doubt, check
first using the file command.

So let's see what text tools we have that are useful to look inside files.

Font problems

Plain text tools such as the ones we will now be discussing, often have problems with "plain" text files
because of the font encoding used in those files. Special characters, such as accented alphabetical
characters, Chinese characters and other characters from languages using different character sets than the
default en_US encoding and so on, are then displayed the wrong way or replaced by unreadable rubbish.
These problems are discussed in Section 7.5.

3.3.4.2. "less is more"

Undoubtedly you will hear someone say this phrase sooner or later when working in a UNIX environment. A
little bit of UNIX history explains this:

First there was cat. Output was streamed in an uncontrollable way.• 
Then there was pg, which may still be found on older UNIXes. This command puts text to the output
one page at the time.

• 

The more program was a revised version of pg. This command is still available on every Linux
system.

• 

less is the GNU version of more and has extra features allowing highlighting of search strings,
scrolling back etc. The syntax is very simple:

less file

More information is located in the Info pages.

• 
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3.3.4.3. Head and tail

These two commands display the n first/last lines of a file respectively. To see the last ten commands entered:

tony:~> tail −10 .bash_history 
locate configure | grep bin
man bash
cd
xawtv &
grep usable /usr/share/dict/words 
grep advisable /usr/share/dict/words 
info quota
man quota
echo $PATH
frm

head works similarly. The tail command has a handy feature to continuously show the last n lines of a file
that changes all the time. This −f option is often used by system administrators to check on log files. More
information is located in the system documentation files.

3.3.5. Linking files

3.3.5.1. Link types

Since we know more about files and their representation in the file system, understanding links (or shortcuts)
is a piece of cake. A link is nothing more than a way of matching two or more file names to the same set of
file data. There are two ways to achieve this:

Hard link: Associate two or more file names with the same inode. Hard links share the same data
blocks on the hard disk, while they continue to behave as independent files.

There is an immediate disadvantage: hard links can't span partitions, because inode numbers are only
unique within a given partition.

• 

Soft link or symbolic link (or for short: symlink): a small file that is a pointer to another file. A
symbolic link contains the path to the target file instead of a physical location on the hard disk. Since
inodes are not used in this system, soft links can span across partitions.

• 

The two link types behave similar, but are not the same, as illustrated in the scheme below:

Figure 3−2. Hard and soft link mechanism
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Note that removing the target file for a symbolic link makes the link useless.

Each regular file is principally a hardlink. Hardlinks can not span across partitions, since they refer to inodes,
and inode numbers are only unique within a given partition.

It may be argued that there is a third kind of link, the user−space link, which is similar to a shortcut in MS
Windows. These are files containing meta−data which can only be interpreted by the graphical file manager.
To the kernel and the shell these are just normal files. They may end in a .desktop or .lnk suffix; an example
can be found in ~/.gnome−desktop:

[dupont@boulot .gnome−desktop]$ cat La\ Maison\ Dupont
[Desktop Entry]
Encoding=Legacy−Mixed
Name=La Maison Dupont
Type=X−nautilus−home
X−Nautilus−Icon=temp−home
URL=file:///home/dupont

This example is from a KDE desktop:

[lena@venus Desktop]$ cat camera
[Desktop Entry]
Dev=/dev/sda1
FSType=auto
Icon=memory
MountPoint=/mnt/camera
Type=FSDevice
X−KDE−Dynamic−Device=true

Creating this kind of link is easy enough using the features of your graphical environment. Should you need
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help, your system documentation should be your first resort.

In the next section, we will study the creation of UNIX−style symbolic links using the command line.

3.3.5.2. Creating symbolic links

The symbolic link is particularly interesting for beginning users: they are fairly obvious to see and you don't
need to worry about partitions.

The command to make links is ln. In order to create symlinks, you need to use the −s option:

ln −s targetfile linkname

In the example below, user freddy creates a link in a subdirectory of his home directory to a directory on
another part of the system:

freddy:~/music> ln −s /opt/mp3/Queen/ Queen

freddy:~/music> ls −l
lrwxrwxrwx  1 freddy  freddy  17 Jan 22 11:07 Queen −> /opt/mp3/Queen

Symbolic links are always very small files, while hard links have the same size as the original file.

The application of symbolic links is widespread. They are often used to save disk space, to make a copy of a
file in order to satisfy installation requirements of a new program that expects the file to be in another
location, they are used to fix scripts that suddenly have to run in a new environment and can generally save a
lot of work. A system admin may decide to move the home directories of the users to a new location, disk2
for instance, but if he wants everything to work like before, like the /etc/passwd file, with a minimum of
effort he will create a symlink from /home to the new location /disk2/home.

3.4. File security

3.4.1. Access rights: Linux's first line of defense

The Linux security model is based on the one used on UNIX systems, and is as rigid, and in some cases even
more, as the UNIX security model, which is already quite robust. On a Linux system, every file is owned by a
user and a group user. There is also a third category of users, those that are not the user owner and don't
belong to the group owning the file. For each category of users, read, write and execute permissions can be
granted or denied.

We already used the long option to list files using the ls −l command, though for other reasons. This
command also displays file permissions for these three user categories; they are indicated by the nine
characters that follow the first character, which is the file type indicator at the beginning of the file properties
line. As seen in the examples below, the first three characters in this series of nine display access rights for the
actual user that owns the file. The next three are for the group owner of the file, the last three for other users.
The permissions are always in the same order: read, write, execute for the user, the group and the others.
Some examples:

marise:~> ls −l To_Do
−rw−rw−r−−    1 marise  users      5 Jan 15 12:39 To_Do
marise:~> ls −l /bin/ls
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−rwxr−xr−x    1 root    root   45948 Aug  9 15:01 /bin/ls*

The first file is a regular file (first dash). Users with user name marise or users belonging to the group users
can read and write (change/move/delete) the file, but they can't execute it (second and third dash). All other
users are only allowed to read this file, but they can't write or execute it (fourth and fifth dash).

The second example is an executable file, the difference: everybody can run this program, but you need to be
root to change it.

The Info pages explain how the ls command handles display of access rights in detail, see the section What
information is listed.

For easy use with commands, both access rights or modes and user groups have a code. See the tables below.

Table 3−7. Access mode codes

Code Meaning

0 or − The access right that is supposed to be on this place is not granted.

4 or r read access is granted to the user category defined in this place

2 or w write permission is granted to the user category defined in this place

1 or x execute permission is granted to the user category defined in this place

Table 3−8. User group codes

Code Meaning

u user permissions

g group permissions

o permissions for others

This straight forward scheme is applied very strictly, which allows a high level of security even without
network security. Among other functions, the security scheme takes care of user access to programs, it can
serve files on a need−to−know basis and protect sensitive data such as home directories and system
configuration files.

You should know what your user name is. If you don't, it can be displayed using the id command, which also
displays the default group you belong to and eventually other groups of which you are a member:

tilly:~> id
uid=504(tilly) gid=504(tilly) groups=504(tilly),100(users),2051(org)

Your user name is also stored in the environment variable USER:

tilly:~> echo $USER
tilly
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3.4.2. The tools

3.4.2.1. The chmod command

A normal consequence of applying strict file permissions, and sometimes a nuisance, is that access rights will
need to be changed for all kinds of reasons. We use the chmod command to do this, and eventually to chmod
has become an almost acceptable English verb, meaning the changing of the access mode of a file. The
chmod command can be used with alphanumeric or numeric options, whatever you like best.

The example below uses alphanumeric options in order to solve a problem that commonly occurs with new
users:

asim:~> ./hello
bash: ./hello: bad interpreter: Permission denied

asim:~> cat hello
#!/bin/bash
echo "Hello, World"

asim:~> ls −l hello
−rw−rw−r−−    1 asim    asim    32 Jan 15 16:29 hello

asim:~> chmod u+x hello

asim:~> ./hello
Hello, World

asim:~> ls −l hello
−rwxrw−r−−   1 asim    asim    32 Jan 15 16:29 hello*

The + and − operators are used to grant or deny a given right to a given group. Combinations separated by
commas are allowed. The Info and man pages contain useful examples. Here's another one, which makes the
file from the previous example a private file to user asim:

asim:~> chmod u+rwx,go−rwx hello

asim:~> ls −l hello
−rwx−−−−−−    1 asim    asim    32 Jan 15 16:29 hello*

The kind of problem resulting in an error message saying that permission is denied somewhere is usually a
problem with access rights in most cases. Also, comments like, "It worked yesterday," and "When I run this as
root it works," are most likely caused by the wrong file permissions.

When using chmod with numeric arguments, the values for each granted access right have to be counted
together per group. Thus we get a 3−digit number, which is the symbolic value for the settings chmod has to
make. The following table lists the most common combinations:

Table 3−9. File protection with chmod

Command Meaning

chmod 400 file To protect a file against accidental overwriting.

chmod 500 directory To protect yourself from accidentally removing, renaming or moving files
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from this directory.

chmod 600 file A private file only changeable by the user who entered this command.

chmod 644 file A publicly readable file that can only be changed by the issuing user.

chmod 660 file
Users belonging to your group can change this files, others don't have any
access to it at all.

chmod 700 file
Protects a file against any access from other users, while the issuing user still
has full access.

chmod 755 directory
For files that should be readable and executable by others, but only
changeable by the issuing user.

chmod 775 file Standard file sharing mode for a group.

chmod 777 file Everybody can do everything to this file.

If you enter a number with less than three digits as an argument to chmod, omitted characters are replaced
with zeros starting from the left. There is actually a fourth digit on Linux systems, that precedes the first three
and sets special access modes. Everything about these and many more are located in the Info pages.

3.4.2.2. The file mask

When a new file is saved somewhere, it is first subjected to the standard security procedure. Files without
permissions don't exist on Linux. The standard file permission is determined by the mask for new file creation.
The value of this mask can be displayed using the umask command:

bert:~> umask
0002

Instead of adding the symbolic values to each other, as with chmod, for calculating the permission on a new
file they need to be subtracted from the total possible access rights. In the example above, however, we see 4
values displayed, yet there are only 3 permission categories: user, group and other. The first zero is part of the
special file attributes settings, which we will discuss in Section 3.4.2.4 and Section 4.1.6. It might just as well
be that this first zero is not displayed on your system when entering the umask command, and that you only
see 3 numbers representing the default file creation mask.

Each UNIX−like system has a system function for creating new files, which is called each time a user uses a
program that creates new files, for instance, when downloading a file from the Internet, when saving a new
text document and so on. This function creates both new files and new directories. Full read, write and
execute permission is granted to everybody when creating a new directory. When creating a new file, this
function will grant read and write permissions for everybody, but set execute permissions to none for all user
categories. This, before the mask is applied, a directory has permissions 777 or rwxrwxrwx, a plain file 666 or
rw−rw−rw−.

The umask value is subtracted from these default permissions after the function has created the new file or
directory. Thus, a directory will have permissions of 775 by default, a file 664, if the mask value is (0)002.
This is demonstrated in the example below:

bert:~> mkdir newdir

bert:~> ls −ld newdir
drwxrwxr−x    2 bert    bert            4096 Feb 28 13:45 newdir/

bert:~> touch newfile
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bert:~> ls −l newfile
−rw−rw−r−−    1 bert    bert               0 Feb 28 13:52 newfile

The root user usually has stricter default file creation permissions:

[root@estoban root]# umask
022

These defaults are set system−wide in the shell resource configuration files, for instance /etc/bashrc or
/etc/profile. You can change them in your own shell configuration file, see Chapter 7 on customizing
your shell environment.

3.4.2.3. Changing user and group ownership

When a file is owned by the wrong user or group, the error can be repaired with the chown (change owner)
and chgrp (change group) commands. Changing file ownership is a frequent task in environments where files
need to be shared in a group. Both commands are very flexible, as you can find out by using the −−help
option.

The chown command can be applied to change both user and group ownership of a file, while chgrp only
changes group ownership. Of course the system will check if the user issuing one of these commands has
sufficient permissions on the file(s) she wants to change.

In order to only change the user ownership of a file, use this syntax:

chown newuser file

If you use a colon after the user name (see the Info pages), group ownership will be changed as well, to the
primary group of the user issuing the command. On a Linux system, each user has his own group, so this form
can be used to make files private:

jacky:~> id
uid=1304(jacky) gid=(1304) groups=1304(jacky),2034(pproject)

jacky:~> ls −l my_report
−rw−rw−r−−  1 jacky   project       29387 Jan 15 09:34 my_report

jacky:~> chown jacky: my_report

jacky:~> chmod o−r my_report

jacky:~> ls −l my_report
−rw−rw−−−−  1 jacky   jacky         29387 Jan 15 09:34 my_report

If jacky would like to share this file, without having to give everybody permission to write it, he can use the
chgrp command:

jacky:~> ls −l report−20020115.xls
−rw−rw−−−− 1 jacky   jacky   45635 Jan 15 09:35 report−20020115.xls

jacky:~> chgrp project report−20020115.xls

jacky:~> chmod o= report−20020115.xls
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jacky:~> ls −l report−20020115.xls
−rw−rw−−−− 1 jacky   project 45635 Jan 15 09:35 report−20020115.xls

This way, users in the group project will be able to work on this file. Users not in this group have no business
with it at all.

Both chown and chgrp can be used to change ownership recursively, using the −R option. In that case, all
underlying files and subdirectories of a given directory will belong to the given user and/or group.

3.4.2.4. Special modes

For the system admin to not be bothered solving permission problems all the time, special access rights can be
given to entire directories, or to separate programs. There are three special modes:

Sticky bit mode: After execution of a job, the command is kept in the system memory. Originally this
was a feature used a lot to save memory, but these days memory is inexpensive, so it is not used
anymore for its optimizing capabilities on single files. When applied to an entire directory, however,
the sticky bit has a different meaning. In that case, a user can only change files in this directory when
she is the user owner of the file or when the file has appropriate permissions. This feature is used on
directories like /var/tmp, that have to be accessible for everyone, but where it is not appropriate for
users to change or delete each other's data. The sticky bit is indicated by a t at the end of the file
permission field:
mark:~> ls −ld /var/tmp
drwxrwxrwt   19 root     root         8192 Jan 16 10:37 /var/tmp/

The sticky bit is set using the command chmod o+tdirectory. The historic origin of the "t" is in
UNIX' save Text access feature.

• 

SUID (set user ID) and SGID (set group ID): represented by the character s in the user or group
permission field. When this mode is set on an executable file, it will run with the user and group
permissions on the file instead of with those of the user issuing the command, thus giving access to
system resources. We will discuss this further in Chapter 4.

• 

SGID (set group ID) on a directory: in this special case every file created in the directory will have
the same group owner as the directory itself (while normal behavior would be that new files are
owned by the users who create them). This way, users don't need to worry about file ownership when
sharing directories:
mimi:~> ls −ld /opt/docs
drwxrws−−−  4 root    users          4096 Jul 25 2001 docs/

mimi:~> ls −l /opt/docs
−rw−rw−−−−  1 mimi    users        345672 Aug 30 2001−Council.doc

This is the standard way of sharing files in UNIX.

Existing files are left unchanged!

Files that are being moved to a SGID directory but were created elsewhere keep their original
user and group owner. This may be confusing.

• 

3.5. Summary

On UNIX, as on Linux, all entities are in some way or another presented to the system as files with the
appropriate file properties. Use of (predefined) paths allows the users and the system admin to find, read and
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manipulate files.

We've made our first steps toward becoming an expert: we discussed the real and the fake structure of the file
system, and we know about the Linux file security model, as well as several other security precautions that are
taken on every system by default.

The shell is the most important tool for interaction with the system. We learned several shell commands in
this chapter, which are listed in the table below.

Table 3−10. New commands

Command Meaning

bash GNU shell program.

cat file(s) Send content of file(s) to standard output.

cd directory Enter directory. cd is a bash built−in command.

chgrp newgroup file(s) Change the group ownership of file(s) to newgroup

chmod modefile(s) Change access permissions on file(s)

chown newowner[:[newgroup]] file(s) Change file owner and group ownership.

cp sourcefile targetfile Copy sourcefile to targetfile.

df file
Reports on used disk space on the partition containing
file.

echo string Display a line of text

export
Part of bash that announces variables and their values to
the system.

file filename Determine file type of filename.

find path expression Find files in the file system hierarchy

grep PATTERNfile Print lines in file containing the search pattern.

head file Send the first part of file to standard output

id Prints real and effective user name and groups.

info command Read documentation about command.

less file View file with a powerful viewer.

ln targetfile linkname Make a link with name linkname to targetfile.

locate searchstring Print all accessible files matching the search pattern.

ls file(s) Prints directory content.

man command
Format and display online (system) manual pages for
command.

mkdir newdir Make a new empty directory.

mv oldfile newfile Rename or move oldfile.

pwd Print the present or current working directory.

quota Show disk usage and limits.

rm file Removes files and directories.

rmdir file Removes directories.

tail file Print the last part of file.
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umask [value] Show or change new file creation mode.

wc file Counts lines, words and characters in file.

which command Shows the full path to command.

We also stressed the fact that you should READ THE MAN PAGES. This documentation is your first−aid kit
and contains the answers to many questions. The above list contains the basic commands that you will use on
a daily basis, but they can do much more than the tasks we've discussed here. Reading the documentation will
give you the control you need.

3.6. Exercises

Just login with your common user ID.

3.6.1. Partitions

On which partition is your home directory?• 
How many partitions are on your system?• 
What is the total size of your Linux installation?• 

3.6.2. Paths

Display your search path.• 
Export a senseless path by entering, for instance, export PATH=blah and try listing directory
content.

• 

What is the path to your home directory? How would another user reach your home directory starting
from his own home directory, using a relative path?

• 

Go to the tmp directory in /var.• 
Now go to share in /usr using only one command. Change to doc. What is your present working
directory?

• 

3.6.3. Tour of the system

Change to the /proc directory.• 
What CPU(s) is the system running on?• 
How much RAM does it currently use?• 
How much swap space do you have?• 
What drivers are loaded?• 
How many hours has the system been running?• 
Change to /etc/rc.d and choose the directory appropriate for your run level.• 
What services should be running in this level?• 
Which services run in graphical mode that don't run in text mode?• 
Change to /etc• 
How long does the system keep the log file in which user logins are monitored?• 
Which release are you running?• 
Are there any issues or messages of the day?• 
How many users are defined on your system? Don't count them, let the computer do it for you!• 
How many groups?• 
Where is the time zone information kept?• 
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Are the HOWTOs installed on your system?• 
Change to /usr/share/doc.• 
Name three programs that come with the GNU fileutils package.• 
Which version of bash is installed on this system?• 

3.6.4. Manipulating files

Create a new directory in your home directory.• 
Can you move this directory to the same level as your home directory?• 
Copy all XPM files from /usr/share/pixmaps to the new directory. What does XPM mean?• 
List the files in reverse alphabetical order.• 
Make a directory for files starting with an upper case character and one for files starting with a lower
case character. Move all the files to the appropriate directories.

• 

Remove the remaining files.• 
Delete the directory and its entire content using a single command.• 
Use grep to find out which script starts the Font Server in the graphical run level.• 
Where is the sendmail server program?• 
Make a symbolic link in your home directory to /var/tmp. Check that it really works.• 
Make another symbolic link in your home directory to this link. Check that it works. Remove the first
link and list directory content. What happened to the second link?

• 

3.6.5. File permissions

Can you change file permissions on /home?• 
What is your standard file creation mode?• 
Change ownership of /etc to your own user and group.• 
Change file permissions of ~/.bashrc so that only you and your primary group can read it.• 
Issue the command locate root. Do you notice anything special?• 
Make a symbolic link to /root. Can it be used?• 
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Chapter 4. Processes

Next to files, processes are the most important things on a UNIX/Linux system. In this
chapter, we will take a closer look at those processes. We will learn more about:

Multi−user processing and multi−tasking♦ 
Process types♦ 
Controlling processes♦ 
Process attributes♦ 
The life cycle of a process♦ 
System startup and shutdown♦ 
SUID and SGID♦ 
Managing processes♦ 
System speed and response♦ 
Scheduling processes♦ 
The Vixie cron system♦ 
How to get the most out of your system♦ 

4.1. Processes inside out

4.1.1. Multi−user and multi−tasking

Now that we are more used to our environment and we are able to communicate a little bit with our system, it
is time to study the processes we can start in more detail. Not every command starts a single process. Some
commands initiate a series of processes, such as mozilla; others, like ls, are executed as a single command.

Furthermore, Linux is based on UNIX, where it has been common policy to have multiple users running
multiple commands, at the same time and on the same system. It is obvious that measures have to be taken to
have the CPU manage all these processes, and that functionality has to be provided so users can switch
between processes. In some cases, processes will have to continue to run even when the user who started them
logs out. And users need a means to reactivate interrupted processes.

We will explain the structure of Linux processes in the next sections.

4.1.2. Process types

4.1.2.1. Interactive processes

Interactive processes are initialized and controlled through a terminal session. In other words, there has to be
someone connected to the system to start these processes; they are not started automatically as part of the
system functions. These processes can run in the foreground, occupying the terminal that started the program,
and you can't start other applications as long as this process is running in the foreground. Alternatively, they
can run in the background, so that the terminal in which you started the program can accept new commands
while the program is running. Until now, we only used programs running in the foreground − the length of
time taken to run them was too short to notice − but viewing a file with the less command is a good example
of a command occupying the terminal session. In this case, the activated program is waiting for you to do
something. The program is still connected to the terminal from where it was started, and the terminal is only

Chapter 4. Processes 68



useful for entering commands this program can understand. Other commands will just result in errors or
unresponsiveness of the system.

While a process runs in the background, however, the user is not prevented from doing other things in the
terminal in which he started the program, while it is running.

The shell offers a feature called job control which allows easy handling of multiple processes. This
mechanism switches processes between the foreground and the background. Using this system, programs can
also be started in the background immediately.

Running a process in the background is only useful for programs that don't need user input (via the shell).
Putting a job in the background is typically done when execution of a job is expected to take a long time. In
order to free the issuing terminal after entering the command, a trailing ampersand is added. In the example,
using graphical mode, we open an extra terminal window from the existing one:

billy:~> xterm &
[1] 26558

billy:~> jobs
[1]+  Running                 xterm &

The full job control features are explained in detail in the bash Info pages, so only the frequently used job
control applications are listed here:

Table 4−1. Controlling processes

(part of) command Meaning

regular_command Runs this command in the foreground.

command & Run this command in the background (release the terminal)

jobs Show commands running in the background.

Ctrl+Z Interrupt a process running in the foreground (suspend).

Ctrl+C Stop a process running in the foreground.

%n
Every process running in the background gets a number assigned to it. By using
the % expression a job can be referred to using its number, for instance fg %2.

bg Reactivate a suspended program in the background.

fg Puts the job back in the foreground.

kill End a process (also see Shell Builtin Commands in the Info pages of bash)

More practical examples can be found in the exercises.

Most UNIX systems are likely to be able to run screen, which is useful when you actually want another shell
to execute commands. Upon calling screen, a new session is created with an accompanying shell and/or
commands as specified, which you can then put out of the way. In this new session you may do whatever it is
you want to do. All programs and operations will run independent of the issuing shell. You can then detach
this session, while the programs you started in it continue to run, even when you log out of the originating
shell, and pick your screen up again any time you like.
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This program originates from a time when virtual consoles were not invented yet, and everything needed to be
done using one text terminal. To addicts, it still has meaning in Linux, even though we've had virtual consoles
for almost ten years.

4.1.2.2. Automatic processes

Automatic or batch processes are not connected to a terminal. Rather, these are tasks that can be queued into a
spooler area, where they wait to be executed on a FIFO (first−in, first−out) basis. Such tasks can be executed
using one of two criteria:

At a certain date and time: done using the at command, which we will discuss in the second part of
this chapter.

• 

At times when the total system load is low enough to accept extra jobs: done using the batch
command. By default, tasks are put in a queue where they wait to be executed until the system load is
lower than 0.8. In large environments, the system administrator may prefer batch processing when
large amounts of data have to be processed or when tasks demanding a lot of system resources have to
be executed on an already loaded system. Batch processing is also used for optimizing system
performance.

• 

4.1.2.3. Daemons

Daemons are server processes that run continuously. Most of the time, they are initialized at system startup
and then wait in the background until their service is required. A typical example is the networking daemon,
xinetd, which is started in almost every boot procedure. After the system is booted, the network daemon just
sits and waits until a client program, such as an FTP client, needs to connect.

4.1.3. Process attributes

A process has a series of characteristics:

The process ID or PID: a unique identification number used to refer to the process.• 
The parent process ID or PPID: the number of the process that started this process.• 
Nice number: the degree of friendliness of this process toward other processes (not to be confused
with process priority, which is calculated based on this nice number and recent CPU usage of the
process).

• 

Terminal or TTY: terminal to which the process is connected.• 
User name of the real and effective user (RUID and EUID): the owner of the process. The real owner
is the user issuing the command, the effective user is the one determining access to system resources.
RUID and EUID are usually the same, and the process has the same access rights the issuing user
would have. An example to clarify this: the browser mozilla in /usr/bin is owned by user root:
theo:~> ls −l /usr/bin/mozilla
−rwxr−xr−x  1 root   root      4996 Nov 20 18:28 /usr/bin/mozilla*

theo:~> mozilla &
[1] 26595

theo:~> ps −af
UID     PID  PPID C STIME TTY       TIME CMD
theo  26601 26599 0 15:04 pts/5 00:00:00 /usr/lib/mozilla/mozilla−bin
theo  26613 26569 0 15:04 pts/5 00:00:00 ps −af

When user theo starts this program, the process itself and all processes started by the initial process,
will be owned by user theo and not by the system administrator. When mozilla needs access to certain

• 
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files, that access will be determined by theo's permissions and not by root's.
Real and effective group owner (RGID and EGID): The real group owner of a process is the primary
group of the user who started the process. The effective group owner is usually the same, except when
SGID access mode has been applied to a file.

• 

4.1.4. Displaying process information

The ps command is one of the tools for visualizing processes. This command has several options which can
be combined to display different process attributes.

With no options specified, ps only gives information about the current shell and eventual processes:

theo:~> ps
  PID TTY          TIME CMD
 4245 pts/7    00:00:00 bash
 5314 pts/7    00:00:00 ps

Since this does not give enough information − generally, at least a hundred processes are running on your
system − we will usually select particular processes out of the list of all processes, using the grep command in
a pipe, see Section 5.1.1.1, as in this line, which will select and display all processes owned by a particular
user:

ps −ef | grep username

This example shows all processes with a process name of bash, the most common login shell on Linux
systems:

theo:> ps auxw | grep bash
brenda   31970  0.0  0.3  6080 1556 tty2   S  Feb23   0:00 −bash
root     32043  0.0  0.3  6112 1600 tty4   S  Feb23   0:00 −bash
theo     32581  0.0  0.3  6384 1864 pts/1  S  Feb23   0:00 bash
theo     32616  0.0  0.3  6396 1896 pts/2  S  Feb23   0:00 bash
theo     32629  0.0  0.3  6380 1856 pts/3  S  Feb23   0:00 bash
theo      2214  0.0  0.3  6412 1944 pts/5  S  16:18   0:02 bash
theo      4245  0.0  0.3  6392 1888 pts/7  S  17:26   0:00 bash
theo      5427  0.0  0.1  3720  548 pts/7  S  19:22   0:00 grep bash

In these cases, the grep command finding lines containing the string bash is often displayed as well on
systems that have a lot of idletime. If you don't want this to happen, use the pgrep command.

Bash shells are a special case: this process list also shows which ones are login shells (where you have to give
your username and password, such as when you log in in textmode or do a remote login, as opposed to
non−login shells, started up for instance by clicking a terminal window icon). Such login shells are preceded
with a dash (−).

More info can be found the usual way: ps −−help or man ps. GNU ps supports different styles of option
formats; the above examples don't contain errors.

Note that ps only gives a momentary state of the active processes, it is a one−time recording. The top program
displays a more precise view by updating the results given by ps (with a bunch of options) once every five
seconds, generating a new list of the processes causing the heaviest load periodically, meanwhile integrating
more information about the swap space in use and the state of the CPU, from the proc file system:
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 12:40pm up 9 days, 6:00, 4 users, load average: 0.21, 0.11, 0.03
89 processes: 86 sleeping, 3 running, 0 zombie, 0 stopped
CPU states:  2.5% user,  1.7% system,  0.0% nice, 95.6% idle
Mem:   255120K av, 239412K used, 15708K free, 756K shrd, 22620K buff
Swap: 1050176K av, 76428K used, 973748K free, 82756K cached

  PID USER  PRI NI SIZE  RSS SHARE STAT %CPU %MEM TIME COMMAND
 5005 root  14  0 91572  15M 11580 R    1.9  6.0  7:53 X
19599 jeff  14  0  1024 1024   796 R    1.1  0.4  0:01 top
19100 jeff   9  0  5288 4948  3888 R    0.5  1.9  0:24 gnome−terminal
19328 jeff   9  0 37884  36M 14724 S    0.5 14.8  1:30 mozilla−bin
    1 root   8  0   516  472   464 S    0.0  0.1  0:06 init
    2 root   9  0     0    0     0 SW   0.0  0.0  0:02 keventd
    3 root   9  0     0    0     0 SW   0.0  0.0  0:00 kapm−idled
    4 root  19 19     0    0     0 SWN  0.0  0.0  0:00 ksoftirqd_CPU0
    5 root   9  0     0    0     0 SW   0.0  0.0  0:33 kswapd
    6 root   9  0     0    0     0 SW   0.0  0.0  0:00 kreclaimd
    7 root   9  0     0    0     0 SW   0.0  0.0  0:00 bdflush
    8 root   9  0     0    0     0 SW   0.0  0.0  0:05 kupdated
    9 root  −1−20     0    0     0 SW<  0.0  0.0  0:00 mdrecoveryd
   13 root   9  0     0    0     0 SW   0.0  0.0  0:01 kjournald
   89 root   9  0     0    0     0 SW   0.0  0.0  0:00 khubd
  219 root   9  0     0    0     0 SW   0.0  0.0  0:00 kjournald
  220 root   9  0     0    0     0 SW   0.0  0.0  0:00 kjournald

The first line of top contains the same information displayed by the uptime command:

jeff:~> uptime
  3:30pm, up 12 days, 23:29, 6 users, load average: 0.01, 0.02, 0.00

The data for these programs is stored among others in /var/run/utmp (information about currently
connected users) and in the virtual file system /proc, for example /proc/loadavg (average load
information). There are all sorts of graphical applications to view this data, such as the Gnome System
Monitor and lavaps. Open Source initiatives like Big Brother centralize this information along with other
server data and logs from multiple servers on one web server, allowing monitoring of the entire IT
infrastructure from one workstation.

The relations between processes can be visualized using the pstree command:

sophie:~> pstree
init−+−amd
     |−apmd
     |−2*[artsd]
     |−atd
     |−crond
     |−deskguide_apple
     |−eth0
     |−gdm−−−gdm−+−X
     |           `−gnome−session−+−Gnome
     |                           |−ssh−agent
     |                           `−true
     |−geyes_applet
     |−gkb_applet
     |−gnome−name−serv
     |−gnome−smproxy
     |−gnome−terminal−+−bash−−−vim
     |                |−bash
     |                |−bash−−−pstree
     |                |−bash−−−ssh
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     |                |−bash−−−mozilla−bin−−−mozilla−bin−−−3*[mozilla−bin]
     |                `−gnome−pty−helper
     |−gpm
     |−gweather
     |−kapm−idled
     |−3*[kdeinit]
     |−keventd
     |−khubd
     |−5*[kjournald]
     |−klogd
     |−lockd−−−rpciod
     |−lpd
     |−mdrecoveryd
     |−6*[mingetty]
     |−8*[nfsd]
     |−nscd−−−nscd−−−5*[nscd]
     |−ntpd
     |−3*[oafd]
     |−panel
     |−portmap
     |−rhnsd
     |−rpc.mountd
     |−rpc.rquotad
     |−rpc.statd
     |−sawfish
     |−screenshooter_a
     |−sendmail
     |−sshd−−−sshd−−−bash−−−su−−−bash
     |−syslogd
     |−tasklist_applet
     |−vmnet−bridge
     |−xfs
     `−xinetd−ipv6

The −u and −a options give additional information, and for more, refer to the Info pages.

In the next section, we will see how one process can create another.

4.1.5. Life and death of a process

4.1.5.1. Process creation

A new process is created because an existing process makes an exact copy of itself. This child process has the
same environment as its parent, only the process ID number is different. This procedure is called forking.

After the forking process, the address space of the child process is overwritten with the new process data. This
is done through an exec call to the system.

The fork−and−exec mechanism thus switches an old command with a new, while the environment in which
the new program is executed remains the same, including configuration of input and output devices,
environment variables and priority. This mechanism is used to create all UNIX processes, so it also applies to
the Linux operating system. Even the first process, init, with process ID 1, is forked during the boot procedure
in the so−called bootstrapping procedure.

This scheme illustrates the fork−and−exec mechanism. The process ID changes after the fork procedure:
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Figure 4−1. Fork−and−exec mechanism

There are a couple of cases in which init becomes the parent of a process, while the process was not started by
init, as we already saw in the pstree example. Many programs, for instance, daemonize their child processes,
so they can keep on running when the parent stops or is being stopped. A window manager is a typical
example; it starts an xterm process that generates a shell that accepts commands. The window manager then
denies any further responsibility and passes the child process to init. Using this mechanism, it is possible to
change window managers without interrupting running applications.

Every now and then things go wrong, even in good families. In an exceptional case, a process might finish
while the parent does not wait for the completion of this process. Such an unburied process is called a zombie
process.

4.1.5.2. Ending processes

When a process ends normally (it is not killed or otherwise unexpectedly interrupted), the program returns its
exit status to the parent. This exit status is a number returned by the program providing the results of the
program's execution. The system of returning information upon executing a job has its origin in the C
programming language in which UNIX has been written.

The return codes can then be interpreted by the parent, or in scripts. The values of the return codes are
program−specific. This information can usually be found in the man pages of the specified program, for
example the grep command returns −1 if no matches are found, upon which a message on the lines of "No
files found" can be printed. Another example is the Bash Builtin command true, which does nothing except
return an exit status of 0, meaning success.
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4.1.6. SUID and SGID

As promised in the previous chapter, we will now discuss the special modes SUID and SGID in more detail.
These modes exist to provide normal users the ability to execute tasks they would normally not be able to do
because of the tight file permission scheme used on UNIX based systems. In the ideal situation special modes
are used as sparsely as possible, since they include security risks. Linux developers have generally tried to
avoid them as much as possible. The Linux ps version, for example, uses the information stored in the /proc
file system, which is accessible to everyone, thus avoiding exposition of sensitive system data and resources
to the general public. Before that, and still on older UNIX systems, the ps program needed access to files such
as /dev/mem and /dev/kmem, which had disadvantages because of the permissions and ownerships on
these files:

rita:~> ls −l /dev/*mem
crw−r−−−−−    1 root     kmem       1,   2 Aug 30 22:30 /dev/kmem
crw−r−−−−−    1 root     kmem       1,   1 Aug 30 22:30 /dev/mem

With older versions of ps, it was not possible to start the program as a common user, unless special modes
were applied to it.

While we generally try to avoid applying any special modes, it is sometimes necessary to use an SUID. An
example is the mechanism for changing passwords. Of course users will want to do this themselves instead of
having their password set by the system administrator. As we know, user names and passwords are listed in
the /etc/passwd file, which has these access permissions and owners:

bea:~> ls −l /etc/passwd
−rw−r−−r−−    1 root     root     1267 Jan 16 14:43 /etc/passwd

Still, users need to be able to change their own information in this file. This is achieved by giving the passwd
program special permissions:

mia:~> which passwd
passwd is /usr/bin/passwd

mia:~> ls −l /usr/bin/passwd
−r−s−−x−−x    1 root     root    13476 Aug  7 06:03 /usr/bin/passwd*

When called, the passwd command will run using the access permissions of root, thus enabling a common
user to edit the password file which is owned by the system admin.

SGID modes on a file don't occur nearly as frequently as SUID, because SGID often involves the creation of
extra groups. In some cases, however, we have to go through this trouble in order to build an elegant solution
(don't worry about this too much − the necessary groups are usually created upon installation). This is the case
for the write and wall programs, which are used to send messages to other users' terminals (ttys). The write
command writes a message to a single user, while wall writes to all connected users.

Sending text to another user's terminal or graphical display is normally not allowed. In order to bypass this
problem, a group has been created, which owns all terminal devices. When the write and wall commands are
granted SGID permissions, the commands will run using the access rights as applicable to this group, tty in
the example. Since this group has write access to the destination terminal, also a user having no permissions
to use that terminal in any way can send messages to it.
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In the example below, user joe first finds out on which terminal his correspondent is connected, using the who
command. Then he sends her a message using the write command. Also illustrated are the access rights on the
write program and on the terminals occupied by the receiving user: it is clear that others than the user owner
have no permissions on the device, except for the group owner, which can write to it.

joe:~> which write
write is /usr/bin/write

joe:~> ls −l /usr/bin/write
−rwxr−sr−x    1 root     tty      8744 Dec  5 00:55 /usr/bin/write*

joe:~> who
jenny     tty1     Jan 23 11:41
jenny     pts/1    Jan 23 12:21 (:0)
jenny     pts/2    Jan 23 12:22 (:0)
jenny     pts/3    Jan 23 12:22 (:0)
joe       pts/0    Jan 20 10:13 (lo.callhost.org)

joe:~> ls −l /dev/tty1
crw−−w−−−−    1 jenny   tty  4,     1 Jan 23 11:41 /dev/tty1

joe:~> write jenny tty1
hey Jenny, shall we have lunch together?
^C

User jenny gets this on her screen:

Message from joe@lo.callhost.org on ptys/1 at 12:36 ...
hey Jenny, shall we have lunch together?
EOF

After receiving a message, the terminal can be cleared using the Ctrl+L key combination. In order to receive
no messages at all (except from the system administrator), use the mesg command. To see which connected
users accept messages from others use who −w. All features are fully explained in the Info pages of each
command.

Group names may vary

The group scheme is specific to the distribution. Other distributions may use other names or other
solutions.

4.2. Boot process, Init and shutdown

4.2.1. Introduction

One of the most powerful aspects of Linux concerns its open method of starting and stopping the operating
system, where it loads specified programs using their particular configurations, permits you to change those
configurations to control the boot process, and shuts down in a graceful and organized way.

Beyond the question of controlling the boot or shutdown process, the open nature of Linux makes it much
easier to determine the exact source of most problems associated with starting up or shutting down your
system. A basic understanding of this process is quite beneficial to everybody who uses a Linux system.
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A lot of Linux systems use lilo, the LInux LOader for booting operating systems. We will only discuss
GRUB, however, which is easier to use and more flexible. Should you need information about lilo, refer to the
man pages and HOWTOs. Both systems support dual boot installations, we refer to the HOWTOs on this
subject for practical examples and background information.

4.2.2. The boot process

When an x86 computer is booted, the processor looks at the end of the system memory for the BIOS (Basic
Input/Output System) and runs it. The BIOS program is written into permanent read−only memory and is
always available for use. The BIOS provides the lowest level interface to peripheral devices and controls the
first step of the boot process.

The BIOS tests the system, looks for and checks peripherals, and then looks for a drive to use to boot the
system. Usually it checks the floppy drive (or CD−ROM drive on many newer systems) for bootable media, if
present, and then it looks to the hard drive. The order of the drives used for booting is usually controlled by a
particular BIOS setting on the system. Once Linux is installed on the hard drive of a system, the BIOS looks
for a Master Boot Record (MBR) starting at the first sector on the first hard drive, loads its contents into
memory, then passes control to it.

This MBR contains instructions on how to load the GRUB (or LILO) boot−loader, using a pre−selected
operating system. The MBR then loads the boot−loader, which takes over the process (if the boot−loader is
installed in the MBR). In the default Red Hat Linux configuration, GRUB uses the settings in the MBR to
display boot options in a menu. Once GRUB has received the correct instructions for the operating system to
start, either from its command line or configuration file, it finds the necessary boot file and hands off control
of the machine to that operating system.

4.2.3. GRUB features

This boot method is called direct loading because instructions are used to directly load the operating system,
with no intermediary code between the boot−loaders and the operating system's main files (such as the
kernel). The boot process used by other operating systems may differ slightly from the above, however. For
example, Microsoft's DOS and Windows operating systems completely overwrite anything on the MBR when
they are installed without incorporating any of the current MBR's configuration. This destroys any other
information stored in the MBR by other operating systems, such as Linux. The Microsoft operating systems,
as well as various other proprietary operating systems, are loaded using a chain loading boot method. With
this method, the MBR points to the first sector of the partition holding the operating system, where it finds the
special files necessary to actually boot that operating system.

GRUB supports both boot methods, allowing you to use it with almost any operating system, most popular
file systems, and almost any hard disk your BIOS can recognize.

GRUB contains a number of other features; the most important include:

GRUB provides a true command−based, pre−OS environment on x86 machines to allow maximum
flexibility in loading operating systems with certain options or gathering information about the
system.

• 

GRUB supports Logical Block Addressing (LBA) mode, needed to access many IDE and all SCSI
hard disks. Before LBA, hard drives could encounter a 1024−cylinder limit, where the BIOS could
not find a file after that point.

• 

Introduction to Linux

Chapter 4. Processes 77



GRUB's configuration file is read from the disk every time the system boots, preventing you from
having to write over the MBR every time you change the boot options.

• 

A full description of GRUB may be found by issuing the info grub command or at the GRUB site. The
Linux Documentation Project has a Multiboot with GRUB Mini−HOWTO.

4.2.4. Init

The kernel, once it is loaded, finds init in sbin and executes it.

When init starts, it becomes the parent or grandparent of all of the processes that start up automatically on
your Linux system. The first thing init does, is reading its initialization file, /etc/inittab. This instructs
init to read an initial configuration script for the environment, which sets the path, starts swapping, checks the
file systems, and so on. Basically, this step takes care of everything that your system needs to have done at
system initialization: setting the clock, initializing serial ports and so forth.

Then init continues to read the /etc/inittab file, which describes how the system should be set up in
each run level and sets the default run level. A run level is a configuration of processes. All UNIX−like
systems can be run in different process configurations, such as the single user mode, which is referred to as
run level 1 or run level S (or s). In this mode, only the system administrator can connect to the system. It is
used to perform maintenance tasks without risks of damaging the system or user data. Naturally, in this
configuration we don't need to offer user services, so they will all be disabled. Another run level is the reboot
run level, or run level 6, which shuts down all running services according to the appropriate procedures and
then restarts the system.

Commonly, run level 3 is configured to be text mode on a Linux machine, and run level 5 initializes the
graphical login and environment. More about run levels in the next section, see Section 4.2.5.

After having determined the default run level for your system, init starts all of the background processes
necessary for the system to run by looking in the appropriate rc directory for that run level. init runs each of
the kill scripts (their file names start with a K) with a stop parameter. It then runs all of the start scripts (their
file names start with an S) in the appropriate run level directory so that all services and applications are started
correctly. In fact, you can execute these same scripts manually after the system is finished booting with a
command like /etc/rc.d/init.d/httpd stop or service httpd stop logged in as root, in this case stopping
the web server.

None of the scripts that actually start and stop the services are located in /etc/rc.d/rc<x>.d. Rather, all
of the files in /etc/rc.d/rc<x>.d are symbolic links that point to the actual scripts located in
/etc/rc.d/init.d. A symbolic link is nothing more than a file that points to another file, and is used in
this case because it can be created and deleted without affecting the actual scripts that kill or start the services.
The symbolic links to the various scripts are numbered in a particular order so that they start in that order.
You can change the order in which the services start up or are killed by changing the name of the symbolic
link that refers to the script that actually controls the service. You can use the same number multiple times if
you want a particular service started or stopped right before or after another service.

Below a sample of /etc/rc5.d content, which lists the services started up in run level 5:

[jean@blub /etc/rc5.d] ls
K15httpd@     K45named@    S08ipchains@  S25netfs@      S85gpm@
K16rarpd@     K46radvd@    S08iptables@  S26apmd@       S90crond@
K20nfs@       K61ldap@     S09isdn@      S28autofs@     S90xfs@
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K20rstatd@    K65identd@   S10network@   S30nscd@       S95anacron@
K20rusersd@   K74ntpd@     S12syslog@    S55sshd@       S95atd@
K20rwalld@    K74ypserv@   S13portmap@   S56rawdevices@ S97rhnsd@
K20rwhod@     K74ypxfrd@   S14nfslock@   S56xinetd@     S99local@
K25squid@     K89bcm5820@  S17keytable@  S60lpd@
K34yppasswdd@  S05kudzu@    S20random@    S80sendmail@

After init has progressed through the run levels to get to the default run level, the /etc/inittab script
forks a getty process for each virtual console (login prompt in text mode). getty opens tty lines, sets their
modes, prints the login prompt, gets the user's name, and then initiates a login process for that user. This
allows users to authenticate themselves to the system and use it. By default, most systems offer 6 virtual
consoles, but as you can see from the inittab file, this is configurable.

/etc/inittab can also tell init how it should handle a user pressing Ctrl+Alt+Delete at the console. As
the system should be properly shut down and restarted rather than immediately power−cycled, init is told to
execute the command /sbin/shutdown −t3 −rnow, for instance, when a user hits those keys. In addition,
/etc/inittab states what init should do in case of power failures, if your system has a UPS unit attached
to it.

In run level 5, /etc/inittab runs a script called /etc/X11/prefdm. The prefdm script runs the
preferred X display manager, based on the contents of the /etc/sysconfig/desktop directory. This is
typically gdm if you run GNOME or kdm if you run KDE, but they can be mixed, and there's also the xdm
that comes with a standard X installation.

The /etc/sysconfig directory contains entries for a range of functions and services, these are all read at
boot time. This last part, however, might be somewhat different depending on your Linux distribution.

Besides the graphical user environment, a lot of other services may be started as well. But if all goes well, you
should be looking at a login prompt or login screen when the boot process has finished.

Other procedures

We explained how SysV init works on x86 based machines. Startup procedures may vary on other
architectures and distributions. Other systems may use the BSD−style init, where startup files are not
split up into multiple /etc/rc.d/rc<LEVEL>.d directories. It might also be possible that your
system uses /etc/init.d instead of /etc/rc.d/init.d.

4.2.5. Init run levels

The idea behind operating different services at different run levels essentially revolves around the fact that
different systems can be used in different ways. Some services cannot be used until the system is in a
particular state, or mode, such as being ready for more than one user or having networking available.

There are times in which you may want to operate the system in a lower mode. Examples are fixing disk
corruption problems in run level 1 so no other users can possibly be on the system, or leaving a server in run
level 3 without an X session running. In these cases, running services that depend upon a higher system mode
to function does not make sense because they will not work correctly anyway. By already having each service
assigned to start when its particular run level is reached, you ensure an orderly start up process, and you can
quickly change the mode of the machine without worrying about which services to manually start or stop.

Available run levels are generally described in /etc/inittab, which is partially shown below:
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#
# inittab   This file describes how the INIT process should set up
#           the system in a certain run−level.

# Default runlevel. The runlevels are:
#   0 − halt (Do NOT set initdefault to this)
#   1 − Single user mode
#   2 − Multiuser, without NFS 
#       (The same as 3, if you do not have networking)
#   3 − Full multiuser mode
#   4 − unused
#   5 − X11
#   6 − reboot (Do NOT set initdefault to this)
# 
id:5:initdefault:
<−−cut−−>

Feel free to configure runlevels 2 and 4 as you see fit. Many users configure those runlevels in a way that
makes the most sense for them while leaving the standard runlevels 3 and 5 alone. This allows them to
quickly move in and out of their custom configuration without disturbing the normal set of features at the
standard runlevels.

If your machine gets into a state where it will not boot due to a bad /etc/inittab or will not let you log in
because you have a corrupted /etc/passwd file (or if you have simply forgotten your password), boot into
single−user mode.

No graphics?

When you are working in text mode because you didn't get presented a graphical login screen on the
console of your machine, you can normally switch to console 7 or up to have a graphical login. If this is
not the case, check the current run level using the command who −r. If it is set to something else than 5,
chances are that the system does not start up in graphical mode by default. Contact your system
administrator or read man init in that case. Note that switching run levels is done using the init
command; switching from a text to a graphical console or vice versa does not involve a run level switch.

4.2.5.1. Tools

The chkconfig utility in /sbin provides a simple command−line tool for maintaining the
/etc/rc.d/init.d directory hierarchy. It relieves system administrators from having to directly
manipulate the numerous symbolic links in the directories under /etc/rc.d.

In addition, some systems offer the ntsysv tool, which provides a text−based interface; you may find this
easier to use than chkconfig's command−line interface. On SuSE Linux, you will find the yast and insserv
tools. For Mandrake easy configuration, you may want to try DrakConf, which allows among other features
switching between run levels 3 and 5.

Most distributions provide a graphical user interface for configuring processes, check with your system
documentation.

All of these utilities must be run as root. The system administrator may also manually create the appropriate
links in each run level directory in order to start or stop a service in a certain run level.
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4.2.6. Shutdown

UNIX was not made to be shut down, but if you really must, use the shutdown command. After completing
the shutdown procedure, the −h option will halt the system, while −r will reboot it.

The reboot and halt commands are now able to invoke shutdown if run when the system is in runlevels 1−5,
and thus ensure proper shutdown of the system,but it is a bad habit to get into, as not all UNIX/Linux versions
have this feature.

If your computer does not power itself down, you should not turn off the computer until you see a message
indicating that the system is halted or finished shutting down, in order to give the system the time to unmount
all partitions. Being impatient may cause data loss.

4.3. Managing processes

4.3.1. Work for the system admin

While managing system resources, including processes, is a task for the local system administrator, it doesn't
hurt a common user to know something about it, especially where his or her own processes and their optimal
execution are concerned.

We will explain a little bit on a theoretical level about system performance, though not as far as hardware
optimization and such. Instead, we will study the daily problems a common user is confronted with, and
actions such a user can take to optimally use the resources available. As we learn in the next section, this is
mainly a matter of thinking before acting.

Figure 4−2. Can't you go faster?
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4.3.2. How long does it take?

Bash offers a built−in time command that displays how long a command takes to execute. The timing is
highly accurate and can be used on any command. In the example below, it takes about a minute and a half to
make this book:

billy:~/xml/src> time make
Output written on abook.pdf (222 pages, 1619861 bytes).
Transcript written on abook.log.

real    1m41.056s
user    1m31.190s
sys     0m1.880s

The GNU time command in /usr/bin (as opposed to the shell built−in version) displays more information
that can be formatted in different ways. It also shows the exit status of the command, and the total elapsed
time. The same command as the above using the independent time gives this output:

billy:~/xml/src> /usr/bin/time make
Output written on abook.pdf (222 pages, 1595027 bytes).
Transcript written on abook.log.

Command exited with non−zero status 2
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88.87user 1.74system 1:36.21elapsed 94%CPU 
                                (0avgtext+0avgdata 0maxresident)k
0inputs+0outputs (2192major+30002minor)pagefaults 0swaps

Refer again to the Info pages for all the information.

4.3.3. Performance

To a user, performance means quick execution of commands. To a system manager, on the other hand, it
means much more: the system admin has to optimize system performance for the whole system, including
users, all programs and daemons. System performance can depend on a thousand tiny things which are not
accounted for with the time command:

the program executing is badly written or doesn't use the computer appropriately• 
access to disks, controllers, display, all kinds of interfaces, etc.• 
reachability of remote systems (network performance)• 
amount of users on the system, amount of users actually working simultaneously• 
time of day• 
...• 

4.3.4. Load

In short: the load depends on what is normal for your system. My old P133 running a firewall, SSH server,
file server, a route daemon, a sendmail server, a proxy server and some other services doesn't complain with 7
users connected; the load is still 0 on average. Some (multi−CPU) systems I've seen were quite happy with a
load of 67. There is only one way to find out − check the load regularly if you want to know what's normal. If
you don't, you will only be able to measure system load from the response time of the command line, which is
a very rough measurement since this speed is influenced by a hundred other factors.

Keep in mind that different systems will behave different with the same load average. For example, a system
with a graphics card supporting hardware acceleration will have no problem rendering 3D images, while the
same system with a cheap VGA card will slow down tremendously while rendering. My old P133 will
become quite uncomfortable when I start the X server, but on a modern system you hardly notice the
difference in the system load.

4.3.5. Can I do anything as a user?

A big environment can slow you down. If you have lots of environment variables set (instead of shell
variables), long search paths that are not optimized (errors in setting the path environment variable) and such,
the system will need more time to search and read data.

In X, window managers and desktop environments can be real CPU−eaters. A really fancy desktop comes
with a price, even when you can download it for free, since most desktops provide add−ons ad infinitum.
Modesty is a virtue if you don't buy a new computer every year.

4.3.5.1. Priority

The priority or importance of a job is defined by it's nice number. A program with a high nice number is
friendly to other programs, other users and the system; it is not an important job. The lower the nice number,
the more important a job is and the more resources it will take without sharing them.
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Making a job nicer by increasing its nice number is only useful for processes that use a lot of CPU time
(compilers, math applications and such). Processes that always use a lot of I/O time are automatically
rewarded by the system and given a higher priority (a lower nice number), for example keyboard input always
gets highest priority on a system.

Defining the priority of a program is done with the nice command.

Most systems also provide the BSD renice command, which allows you to change the niceness of a running
command. Again, read the man page for your system−specific information.

Interactive programs

It is NOT a good idea to nice or renice an interactive program or a job running in the foreground.

Use of these commands is usually a task for the system administrator.

4.3.5.2. CPU resources

On every Linux system, many programs want to use the CPU(s) at the same time, even if you are the only
user on the system. Every program needs a certain amount of cycles on the CPU to run. There may be times
when there are not enough cycles because the CPU is too busy. The uptime command is wildly inaccurate (it
only displays averages, you have to know what is normal), but far from being useless. There are some actions
you can undertake if you think your CPU is to blame for the unresponsiveness of your system:

Run heavy programs when the load is low. This may be the case on your system during the night. See
next section for scheduling.

• 

Prevent the system from doing unnecessary work: stop daemons and programs that you don't use, use
locate instead of a heavy find, ...

• 

Run big jobs with a low priority• 

If none of these solutions are an option in your particular situation, you may want to upgrade your CPU. On a
UNIX machine this is a job for the system admin.

4.3.5.3. Memory resources

When the currently running processes expect more memory than the system has physically available, a Linux
system will not crash; it will start paging, or swapping, meaning the process uses the memory on disk or in
swap space, moving contents of the physical memory (pieces of running programs or entire programs in the
case of swapping) to disk, thus reclaiming the physical memory to handle more processes. This slows the
system down enormously since access to disk is much slower than access to memory. The top command can
be used to display memory and swap use. Systems using glibc offer the memusage and memusagestat
commands to visualize memory usage.

If you find that a lot of memory and swap space are being used, you can try:

Killing, stopping or renicing those programs that use a big chunk of memory• 
Adding more memory (and in some cases more swap space) to the system.• 
Tuning system performance, which is beyond the scope of this document. See the reading list in
Appendix A for more.

• 
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4.3.5.4. I/O resources

While I/O limitations are a major cause of stress for system admins, the Linux system offers rather poor
utilities to measure I/O performance. The ps, vmstat and top tools give some indication about how many
programs are waiting for I/O; netstat displays network interface statistics, but there are virtually no tools
available to measure the I/O response to system load, and the iostat command gives a brief overview of
general I/O usage. Various graphical front−ends exist to put the output of these commands in a humanly
understandable form.

Each device has its own problems, but the bandwidth available to network interfaces and the bandwidth
available to disks are the two primary causes of bottlenecks in I/O performance.

Network I/O problems:

Network overload:

The amount of data transported over the network is larger than the network's capacity, resulting in
slow execution of every network related task for all users. They can be solved by cleaning up the
network (which mainly involves disabling protocols and services that you don't need) or by
reconfiguring the network (for example use of subnets, replacing hubs with switches, upgrading
interfaces and equipment).

• 

Network integrity problems:

Occurs when data is transferred incorrectly. Solving this kind of problem can only be done by
isolating the faulty element and replacing it.

• 

Disk I/O problems:

per−process transfer rate:

Read or write speed for a single process.

• 

aggregate transfer rate:

Maximum total bandwidth that the system can provide to all programs that run.

• 

This kind of problem is more difficult to detect, and usually takes extra hardware in order to re−divide data
streams over buses, controlers and disks, if overloaded hardware is cause of the problem. One solution to
solve this is a RAID array configuration optimized for input and output actions. This way, you get to keep the
same hardware. An upgrade to faster buses, controlers and disks is usually the other option.

If overload is not the cause, maybe your hardware is gradually failing, or not well connected to the system.
Check contacts, connectors and plugs to start with.

4.3.5.5. Users

Users can be divided in several classes, depending on their behavior with resource usage:

Users who run a (large) number of small jobs: you, the beginning Linux user, for instance.• 
Users who run relatively few but large jobs: users running simulations, calculations, emulators or
other programs that eat a lot of memory, and usually these users have accompanying large data files.

• 

Users who run few jobs but use a lot of CPU time (developers and the like).• 
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You can see that system requirements may vary for each class of users, and that it can be hard to satisfy
everyone. If you are on a multi−user system, it is useful (and fun) to find out habits of other users and the
system, in order to get the most out of it for your specific purposes.

4.3.5.6. Graphical tools

For the graphical environment, there are a whole bunch of monitoring tools available. Below is a screen shot
of the Gnome System Monitor, which has features for displaying and searching process information, and
monitoring system resources:

Figure 4−3. Gnome System Monitor

There are also a couple of handy icons you can install in the task bar, such as a disk, memory and load
monitor. xload is another small X application for monitoring system load. Find your favorite!

4.4. Scheduling processes
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4.4.1. Use that idle time!

A Linux system can have a lot to suffer from, but it usually suffers only during office hours. Whether in an
office environment, a server room or at home, most Linux systems are just idling away during the morning,
the evening, the nights and weekends. Using this idle time can be a lot cheaper than buying those machines
you'd absolutely need if you want everything done at the same time.

There are three types of delayed execution:

Waiting a little while and then resuming job execution, using the sleep command. Execution time
depends on the system time at the moment of submission.

• 

Running a command at a specified time, using the at command. Execution of the job(s) depends on
system time, not the time of submission.

• 

Regularly running a command on a monthly, weekly, daily or hourly basis, using the cron facilities.• 

The following sections discuss each possibility.

4.4.2. The sleep command

The Info page on sleep is probably one of the shortest there is. All sleep does is wait. By default the time to
wait is expressed in seconds.

So why does it exist? Some practical examples:

Somebody calls you on the phone, you say "Yes I'll be with you in half an hour" but you're about drowned in
work as it is and bound to forget your lunch:

(sleep 1800; echo "Lunch time..") &

When you can't use the at command for some reason, it's five o'clock, you want to go home but there's still
work to do and right now somebody is eating system resources:

(sleep 10000; myprogram) &

Make sure there's an auto−logout on your system, and that you log out or lock your desktop/office when
submitting this kind of job, or run it in a screen session.

When you run a series of printouts of large files, but you want other users to be able to print in between:

lp lotoftext; sleep 900; lp hugefile; sleep 900; lp anotherlargefile

Printing files is discussed in Chapter 8.

Programmers often use the sleep command to halt script or program execution for a certain time.

4.4.3. The at command

The at command executes commands at a given time, using your default shell unless you tell the command
otherwise (see the man page).

Introduction to Linux

Chapter 4. Processes 87



The options to at are rather user−friendly, which is demonstrated in the examples below:

steven@home:~> at tomorrow + 2 days
warning: commands will be executed using (in order) a) $SHELL
        b) login shell c) /bin/sh
at>  cat reports | mail myboss@mycompany
at> <EOT>
job 1 at 2001−06−16 12:36

Typing Ctrl+D quits the at utility and generates the "EOT" message.

User steven does a strange thing here combining two commands; we will study this sort of practice in Chapter
5, Redirecting Input and Output.

steven@home:~> at 0237
warning: commands will be executed using (in order) a) $SHELL
        b) login shell c) /bin/sh
at>  cd new−programs
at>  ./configure; make
at> <EOT>
job 2 at 2001−06−14 02:00

The −m option sends mail to the user when the job is done, or explains when a job can't be done. The
command atq lists jobs; perform this command before submitting jobs in order prevent them from starting at
the same time as others. With the atrm command you can remove scheduled jobs if you change your mind.

It is a good idea to pick strange execution times, because system jobs are often run at "round" hours, as you
can see in Section 4.4.4 the next section. For example, jobs are often run at exactly 1 o'clock in the morning
(e.g. system indexing to update a standard locate database), so entering a time of 0100 may easily slow your
system down rather than fire it up. To prevent jobs from running all at the same time, you may also use the
batch command, which queues processes and feeds the work in the queue to the system in an evenly balanced
way, preventing excessive bursts of system resource usage. See the Info pages for more information.

4.4.4. Cron and crontab

The cron system is managed by the cron daemon. It gets information about which programs and when they
should run from the system's and users' crontab entries. Only the root user has access to the system crontabs,
while each user should only have access to his own crontabs. On some systems (some) users may not have
access to the cron facility.

At system startup the cron daemon searches /var/spool/cron/ for crontab entries which are named after
accounts in /etc/passwd, it searches /etc/cron.d/ and it searches /etc/crontab, then uses this
information every minute to check if there is something to be done. It executes commands as the user who
owns the crontab file and mails any output of commands to the owner.

On systems using Vixie cron, jobs that occur hourly, daily, weekly and monthly are kept in separate
directories in /etc to keep an overview, as opposed to the standard UNIX cron function, where all tasks are
entered into one big file.

Example of a Vixie crontab file:

[root@blob /etc]# more crontab
SHELL=/bin/bash

Introduction to Linux

Chapter 4. Processes 88



PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root
HOME=/

# run−parts
# commands to execute every hour
01 * * * * root run−parts /etc/cron.hourly
# commands to execute every day
02 4 * * * root run−parts /etc/cron.daily
# commands to execute every week
22 4 * * 0 root run−parts /etc/cron.weekly
commands to execute every month
42 4 1 * * root run−parts /etc/cron.monthly

Some variables are set, and after that there's the actual scheduling, one line per job, starting with 5 time and
date fields. The first field contains the minutes (from 0 to 59), the second defines the hour of execution
(0−23), the third is day of the month (1−31), then the number of the month (1−12), the last is day of the week
(0−7, both 0 and 7 are Sunday). An asterisk in these fields represents the total acceptable range for the field.
Lists are allowed; to execute a job from Monday to Friday enter 1−5 in the last field, to execute a job on
Monday, Wednesday and Friday enter 1,3,5.

Then comes the user who should run the processes which are listed in the last column. The example above is
from a Vixie cron configuration where root runs the program run−parts on regular intervals, with the
appropriate directories as options. In these directories, the actual jobs to be executed at the scheduled time are
stored as shell scripts, like this little script that is run daily to update the database used by the locate
command:

billy@ahost cron.daily]$ cat slocate.cron
#!/bin/sh
renice +19 −p $$ >/dev/null 2>&1
/usr/bin/updatedb −f "nfs,smbfs,ncpfs,proc,devpts" −e \
"/tmp,/var/tmp, /usr/tmp,/afs,/net"

Users are supposed to edit their crontabs in a safe way using the crontab −e command. This will prevent a
user from accidentally opening more than one copy of his/her crontab file. The default editor is vi (see
Chapter 6, but you can use any text editor, such as gvim or gedit if you feel more comfortable with a GUI
editor.

When you quit, the system will tell you that a new crontab is installed.

This crontab entry reminds billy to go to his sports club every Thursday night:

billy:~> crontab −l
# DO NOT EDIT THIS FILE − edit the master and reinstall.
# (/tmp/crontab.20264 installed on Sun Jul 20 22:35:14 2003)
# (Cron version −− $Id: chap4.xml,v 1.12 2004/01/06 17:10:32 tille Exp $)
38 16 * * 3 mail −s "sports evening" billy

After adding a new scheduled task, the system will tell you that a new crontab is installed. You do not need to
restart the crond daemon for the changes to take effect. In the example, billy added a new line pointing to a
backup script:

billy:~> crontab −e
45 15 * * 3 mail −s "sports evening" billy
4 4 * * 4,7 /home/billy/bin/backup.sh
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<−−write and quit−−>

crontab: installing new crontab

billy:~>

The backup.sh script is executed every Thursday and Sunday. See Section 7.2.5 for an introduction to shell
scripting. Keep in mind that output of commands, if any, is mailed to the owner of the crontab file. If no mail
service is configured, you might find the output of your commands in your local mailbox,
/var/spool/mail/<your_username>, a plain text file.

Who runs my commands?

You don't have to specify the user who should run the commands. They are executed with the user's own
permissions by default.

4.5. Summary

Linux is a multi−user, multi−tasking operating system that has a UNIX−like way of handling processes.
Execution speed of commands can depend on a thousand tiny things. Among others, we learned a lot of new
commands to visualize and handle processes. Here's a list:

Table 4−2. Process handling commands

Command Meaning

at Queue jobs for later execution.

atq Lists the user's pending jobs.

atrm Deletes jobs, determined by their job number.

batch Executes commands when system load level permits.

crontab Maintain crontab files for individual users.

halt Stop the system.

init runlevel Process control initialization.

jobs Lists currently executing jobs.

kill Terminate a process.

mesg Control write access to your terminal.

netstat
Display network connections, routing tables, interface statistics, masquerade
connections and multicast memberships.

nice Run a program with modified scheduling priority.

ps Report process status.

pstree Display a tree of processes.

reboot Stop the system.

renice Alter priority of running processes.

shutdown Bring the system down.

sleep Delay for a specified time.

time Time a command or report resource usage.
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top Display top CPU processes.

uptime Show how long the system has been running.

vmstat Report virtual memory statistics.

w Show who is logged on and what they are doing.

wall Send a message to everybody's terminals.

who Show who is logged on.

write Send a message to another user.

4.6. Exercises

These are some exercises that will help you get the feel for processes running on your system.

4.6.1. General

Run top in one terminal while you do the exercises in another.• 
Run the ps command.• 
Read the man pages to find out how to display all your processes.• 
Run the command find /. What effect does it have on system load? Stop this command.• 
In graphical mode, start the xclock program in the foreground. Then let it run in the background. Stop
the program using the kill command.

• 

What does kill −9 −1 do?• 
Open two terminals or terminal windows again and use write to send a message from one to the other.• 
Issue the dmesg command. What does it tell?• 
How long does it take to execute ls in the current directory?• 
Based on process entries in /proc, owned by your UID, how would you work to find out which
processes these actually represent?

• 

How long has your system been running?• 
Which is your current TTY?• 
Name 3 processes that couldn't have had init as an initial parent.• 
Name 3 commands which use SUID mode. Explain why this is so.• 
Name the commands that are generally causing the highest load on your system.• 

4.6.2. Booting, init etc.

Can you reboot the system as a normal user? Why is that?• 
According to your current runlevel, name the steps that are taken during shutdown.• 
How do you change the system runlevel? Switch from 3 to 5 and vice versa.• 
Which kernel is currently load at startup?• 
Suppose you have to start some exotic server at boot time. Up until now, you logged in after booting
the system and started this server manually using a script named deliver_pizza in your home
directory. What do you have to do in order to have the service start up automatically in run level 4,
which you defined for this purpose only?

• 
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4.6.3. Scheduling

Use sleep to create a reminder that your pasta is ready in ten minutes.• 
Create an at job that copies all files in your home directory to /var/tmp within half an hour. You
may want to create a sub−directory in /var/tmp.

• 

Make a cronjob that does this task every Monday to Friday during lunch.• 
Check that it works.• 
Make a mistake in the crontab entry, like issuing the nonexistent command coppy instead of cp. What
happens upon execution of the task?

• 
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Chapter 5. I/O redirection

This chapter describes more about the powerful UNIX mechanism of redirecting input, output
and errors. Topics include:

Standard input, output and errors♦ 
Redirection operators♦ 
How to use output of one command as input for another♦ 
Input redirection♦ 
Handling standard error messages♦ 
Combining redirection of input, output and error streams♦ 
Output filters♦ 

5.1. What are standard input and standard output?

Most Linux commands read input, such as a file or another attribute for the command, and write output. By
default, input is being given with the keyboard, and output is displayed on your screen. Your keyboard is your
"standard input" (stdin) device, and the screen is the "standard output" (stdout) device.

However, since Linux is a flexible system, these default settings don't necessarily have to be applied. The
standard output, for example, on a heavily monitored server in a large environment may be a printer.

5.1.1. The redirection operators

5.1.1.1. Output redirection with > and |

Sometimes you will want to put output of a command in a file, or you may want to issue another command on
the output of one command. This is known as redirecting output. Redirection is done using either the ">"
(greater−than symbol), or using the "|" (pipe) operator which sends the standard output of one command to
another command as standard input.

As we saw before, the cat command concatenates files and puts them all together to the standard output. By
redirecting this output to a file, this file name will be created − or overwritten if it already exists, so take care.

nancy:~> cat test1
some words

nancy:~> cat test2
some other words

nancy:~> cat test1 test2 > test3

nancy:~> cat test3
some words
some other words

Redirecting "nothing" to an existing file is equal to emptying the file:

nancy:~> ls −l list
−rw−rw−r−−    1 nancy   nancy     117 Apr  2 18:09 list
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nancy:~> > list

nancy:~> ls −l list
−rw−rw−r−−    1 nancy   nancy       0 Apr  4 12:01 list

This process is called truncating.

The same redirection to an nonexistent file will create a new empty file with the given name:

nancy:~> ls −l newlist
ls: newlist: No such file or directory

nancy:~> > newlist

nancy:~> ls −l newlist
−rw−rw−r−−  1 nancy   nancy         0 Apr  4 12:05 newlist

Chapter 7 gives some more examples on the use of this sort of redirection.

Some examples using piping of commands:

To find a word within some text, display all lines matching "pattern1", and exclude lines also matching
"pattern2" from being displayed:

grep pattern1 file | grep −v pattern2

To display output of a directory listing one page at a time:

ls −la | less

To find a file in a directory:

ls −l | grep part_of_file_name

5.1.1.2. Input redirection

In another case, you may want a file to be the input for a command that normally wouldn't accept a file as an
option. This redirecting of input is done using the "<" (less−than symbol) operator.

Below is an example of sending a file to somebody, using input redirection.

andy:~> mail mike@somewhere.org < to_do

If the user mike exists on the system, you don't need to type the full address. If you want to reach somebody
on the Internet, enter the fully qualified address as an argument to mail.

This reads a bit more difficult than the beginner's cat file | mail someone, but it is of course a much more
elegant way of using the available tools.

Introduction to Linux

Chapter 5. I/O redirection 94



5.1.1.3. Combining redirections

The following example combines input and output redirection. The file text.txt is first checked for
spelling mistakes, and the output is redirected to an error log file:

aspell < text.txt > error.log

It might be that you have to use the following syntax to spell a file (check with the man pages):

aspell −Hlist < file.txt | sort −u

This also uses input and output redirection.

The following command lists all commands that you can issue to examine another file when using less:

mike:~> less −−help | grep −i examine
  :e [file]      Examine a new file.
  :n          *  Examine the (N−th) next file from the command line.
  :p          *  Examine the (N−th) previous file from the command line.
  :x          *  Examine the first (or N−th) file from the command line.

The −i option is used for case−insensitive searches − remember that UNIX systems are very case−sensitive.

If you want to save output of this command for future reference, redirect the output to a file:

mike:~> less −−help | grep −i examine > examine−files−in−less

mike:~> cat examine−files−in−less
  :e [file]      Examine a new file.
  :n          *  Examine the (N−th) next file from the command line.
  :p          *  Examine the (N−th) previous file from the command line.
  :x          *  Examine the first (or N−th) file from the command line.

Output of one command can be piped into another command virtually as many times as you want, just as long
as these commands would normally read input from standard input and write output to the standard output.
Sometimes they don't, but then there may be special options that instruct these commands to behave according
to the standard definitions; so read the documentation (man and info pages) of the commands you use if you
should encounter errors.

Don't overwrite!

Be careful not to overwrite existing (important) files when redirecting output. Many shells, including
Bash, have a built−in feature to protect you from that risk: noclobber. See the Info pages for more
information. In Bash, you would want to add the set −onoclobber command to your .bashrc
configuration file in order to prevent accidental overwriting of files.

5.1.1.4. The >> operator

Instead of overwriting file data, you can also append text to an existing file using two subsequent greater−than
signs:

Example:
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mike:~> date >> wishlist

mike:~> cat wishlist
more money
less work
Thu Feb 28 20:23:07 CET 2002

The date command would normally put the last line on the screen; now it is appended to the file wishlist.

5.1.2. Advanced redirection features

5.1.2.1. Use of file descriptors

There are three types of I/O, which each have their own identifier, called a file descriptor:

standard input: 0• 
standard output: 1• 
standard error: 2• 

In the following descriptions, if the file descriptor number is omitted, and the first character of the redirection
operator is <, the redirection refers to the standard input (file descriptor 0). If the first character of the
redirection operator is >, the redirection refers to the standard output (file descriptor 1).

Some practical examples will make this more clear:

ls > dirlist 2>&1

will direct both standard output and standard error to the file dirlist, while the command

ls 2>&1 > dirlist

will only direct standard output to dirlist. This can be a useful option for programmers.

All this is explained in detail in the Bash Info pages.

5.1.2.2. Examples

5.1.2.2.1. Analyzing errors

If your process generates a lot of errors, this is a way to thoroughly examine them:

command 2>&1 | less

This is often used when creating new software using the make, such as in:

andy:~/newsoft> make all 2>&1 | less
−−output ommitted−−
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5.1.2.2.2. Separating standard output from standard error

Constructs like these are often used by programmers, so that output is displayed in one terminal window, and
errors in another. Find out which pseudo terminal you are using issuing the tty command first:

andy:~/newsoft> make all 2> /dev/pts/7

5.1.3. Filters

When a program performs operations on input and writes the result to the standard output, it is called a filter.
One of the most common uses of filters is to restructure output. We'll discuss a couple of the most important
filters below.

5.1.3.1. More about grep

As we saw in Section 3.3.3.4, grep scans the output line per line, searching for matching patterns. All lines
containing the pattern will be printed to standard output. This behavior can be reversed using the −v option.

Some examples: suppose we want to know which files in a certain directory have been modified in February:

jenny:~> ls −la | grep Feb

The grep command, like most commands, is case sensitive. Use the −i option to make no difference between
upper and lower case. A lot of GNU extensions are available as well, such as −−colour, which is helpful to
highlight searchterms in long lines, and −−after−context, which prints the number of lines after the last
matching line. You can issue a recursive grep that searches all subdirectories of encountered directories using
the −r option. As usual, options can be combined.

Regular expressions can be used to further detail the exact character matches you want to select out of all the
input lines. The best way to start with regular expressions is indeed to read the grep documentation. An
excellent chapter is included in the info grep page. Since it would lead us too far discussing the ins and outs
of regular expressions, it is strongly advised to start here if you want to know more about them.

Play around a bit with grep, it will be worth the trouble putting some time in this most basic but very
powerful filtering command. The exercises at the end of this chapter will help you started, see Section 5.3.

5.1.3.2. Filtering output

The command sort arranges lines in alphabetical order by default:

thomas:~> cat people−I−like | sort
Auntie Emmy
Boyfriend
Dad
Grandma
Mum
My boss

But there are many more things sort can do. Looking at the file size, for instance. With this command,
directory content is sorted smallest files first, biggest files last:
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ls −la | sort −nk 5

Old sort syntax

You might obtain the same result with ls −la | sort +4n, but this is an old form which does not comply
with the current standards.

The sort command is also used in combination with the uniq program (or sort −u) to sort output and filter out
double entries.

5.2. Summary

In this chapter we learned how commands can be linked to each other, and how input from one command can
be used as output for another command.

Input/output redirection is a common task on UNIX and Linux machines. This powerful mechanism allows
flexible use of the building blocks UNIX is made of.

5.3. Exercises

These exercises give more examples on how to combine commands. The main goal is to try and use the Enter
key as little as possible.

All exercises are done using a normal user ID, so as to generate some errors. While you're at it, don't forget to
read those man pages!

Use the cut command on the output of a long directory listing in order to display only the file
permissions. Then pipe this output to sort and uniq to filter out any double lines. Then use the wc to
count the different permission types in this directory.

• 

Put the output of date in a file. Append the output of ls to this file. Send this file to your local mailbox
(don't specify anything <@domain>, just the user name will do). When using Bash, you will see a
new mail notice upon success.

• 

List the devices in /dev which are currently used by your UID. Pipe through less to view them
properly.

• 

Use the command bash −x to start up the HTTP daemon with the script in /etc/rc.d/init.d.
Send standard error to a file. Do the same but now send standard output to the file. Note the
difference.

• 

How many processes are you currently running?• 
How many invisible files are in your home directory?• 
Use locate to find documentation about the kernel.• 
Find out which file contains the following entry:
root:x:0:0:root:/root:/bin/bash

And this one:

system:         root

• 

See what happens upon issuing this command:

> time; date >> time; cat < time

• 
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Chapter 6. Text editors

In this chapter, we will discuss the importance of mastering an editor. We will focus mainly
on the Improved vi editor.

After finishing this chapter, you will be able to:

Open and close files in text mode♦ 
Edit files♦ 
Search text♦ 
Undo errors♦ 
Merge files♦ 
Recover lost files♦ 
Find a program or suite for office use♦ 

6.1. Text editors

6.1.1. Why should I use an editor?

It is very important to be able to use at least one text mode editor. Knowing how to use an editor on your
system is the first step to independence.

We will need to master an editor by the next chapter as we need it to edit files that influence our environment.
As an advanced user, you may want to start writing scripts, or books, develop websites or new programs.
Mastering an editor will immensely improve your productivity as well as your capabilities.

6.1.2. Which editor should I use?

Our focus is on text editors, which can also be used on systems without a graphical environment and in
terminal windows. The additional advantage of mastering a text editor is in using it on remote machines.
Since you don't need to transfer the entire graphical environment over the network, working with text editors
tremendously improves network speed.

There are, as usual, multiple ways to handle the problem. Let's see what editors are commonly available:

6.1.2.1. Ed

The ed editor is line−oriented and used to create, display, modify and otherwise manipulate text files, both
interactively and by use in shell scripts.

ed is the original text editor on UNIX machines, and thus widely available. For most purposes, however, it is
superceded by full−screen editors such as emacs and vi, see below.
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6.1.2.2. GNU Emacs

Emacs is the extensible, customizable, self−documenting, real−time display editor, known on many UNIX
and other systems. The text being edited is visible on the screen and is updated automatically as you type your
commands. It is a real−time editor because the display is updated very frequently, usually after each character
or pair of characters you type. This minimizes the amount of information you must keep in your head as you
edit. Emacs is called advanced because it provides facilities that go beyond simple insertion and deletion:
controlling subprocesses; automatic indentation of programs; viewing two or more files at once; editing
formatted text; and dealing in terms of characters, words, lines, sentences, paragraphs, and pages, as well as
expressions and comments in several different programming languages.

Self−documenting means that at any time you can type a special character, Ctrl+H, to find out what your
options are. You can also use it to find out what any command does, or to find all the commands that pertain
to a topic. Customizable means that you can change the definitions of Emacs commands in little ways. For
example, if you use a programming language in which comments start with `<**' and end with `**>', you can
tell the Emacs comment manipulation commands to use those strings. Another sort of customization is
rearrangement of the command set. For example, if you prefer the four basic cursor motion commands (up,
down, left and right) on keys in a diamond pattern on the keyboard, you can rebind the keys that way.

Extensible means that you can go beyond simple customization and write entirely new commands, programs
in the Lisp language that are run by Emacs's own Lisp interpreter. Emacs is an online extensible system,
which means that it is divided into many functions that call each other, any of which can be redefined in the
middle of an editing session. Almost any part of Emacs can be replaced without making a separate copy of all
of Emacs. Most of the editing commands of Emacs are written in Lisp already; the few exceptions could have
been written in Lisp but are written in C for efficiency. Although only a programmer can write an extension,
anybody can use it afterward.

When run under the X Window System, Emacs provides its own menus and convenient bindings to mouse
buttons. But Emacs can provide many of the benefits of a window system on a text−only terminal. For
instance, you can look at or edit several files at once, move text between files, and edit files while running
shell commands.

6.1.2.3. Vi(m)

Vim stands for Vi IMproved. It used to be Vi IMitation, but there are so many improvements that a name
change was appropriate. Vim is a text editor which includes almost all the commands from the UNIX program
vi and a lot of new ones.

Commands in the vi editor are entered using only the keyboard, which has the advantage that you can keep
your fingers on the keyboard and your eyes on the screen, rather than moving your arm repeatedly to the
mouse. For those who want it, mouse support and a GUI version with scrollbars and menus can be activated.

We will refer to vi or vim throughout this book for editing files, while you are of course free to use the editor
of your choice. However, we recommend to at least get the vi basics in the fingers, because it is the standard
text editor on almost all UNIX systems, while emacs can be an optional package. There may be small
differences between different computers and terminals, but the main point is that if you can work with vi, you
can survive on any UNIX system.
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6.2. Using the Vim editor

6.2.1. Two modes

The vi editor is a very powerful tool and has a very extensive built−in manual, which you can activate using
the :help command when the program is started (instead of using man or info, which don't contain nearly as
much information). We will only discuss the very basics here to get you started.

What makes vi confusing to the beginner is that it can operate in two modes: command mode and insert mode.
The editor always starts in command mode. Commands move you through the text, search, replace, mark
blocks and perform other editing tasks, and some of them switch the editor to insert mode.

This means that each key has not one, but likely two meanings: it can either represent a command for the
editor when in command mode, or a character that you want in a text when in insert mode.

Pronunciation

It's pronounced "vee−eye".

6.2.2. Basic commands

6.2.2.1. Moving through the text

Moving through the text is usually possible with the arrow keys. If not, try:

h to move the cursor to the left• 
l to move it to the right• 
k to move up• 
j to move down• 

SHIFT−G will put the prompt at the end of the document.

6.2.2.2. Basic operations

n dd will delete n lines starting from the current cursor position.• 
n dw will delete n words at the right side of the cursor.• 
x will delete the character on which the cursor is positioned• 
:n moves to line n of the file.• 
:w will save (write) the file• 
:q will exit the editor.• 
:q! forces the exit when you want to quit a file containing unsaved changes.• 
:wq will save and exit• 
:w newfile will save the text to newfile.• 
:wq! overrides read−only permission (if you have the permission to override permissions, for instance
when you are using the root account.

• 

/astring will search the string in the file and position the cursor on the first match below its position.• 
/ will perform the same search again, moving the cursor to the next match.• 
:1, $s/word/anotherword/g will replace word with anotherword throughout the file.• 
yy will copy a block of text.• 
n p will paste it n times.• 
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:recover will recover a file after an unexpected interruption.• 

6.2.2.3. Commands that switch the editor to insert mode

a will append: it moves the cursor one position to the right before switching to insert mode• 
i will insert• 
o will insert a blank line under the current cursor position and move the cursor to that line.• 

Pressing the Esc key switches back to command mode. If you're not sure what mode you're in because you
use a really old version of vi that doesn't display an "INSERT" message, type Esc and you'll be sure to return
to command mode. It is possible that the system gives a little alert when you are already in command mode
when hitting Esc, by beeping or giving a visual bell (a flash on the screen). This is normal behavior.

6.2.3. The easy way

Instead of reading the text, which is quite boring, you can use the vimtutor to learn you first Vim commands.
This is a thirty minute tutorial that teaches the most basic Vim functionality in eight easy exercises. While you
can't learn everything about vim in just half an hour, the tutor is designed to describe enough of the
commands that you will be able to easily use Vim as an all−purpose editor.

In UNIX and MS Windows, if Vim has been properly installed, you can start this program from the shell or
command line, entering the vimtutor command. This will make a copy of the tutor file, so that you can edit it
without the risk of damaging the original. There are a few translated versions of the tutor. To find out if yours
is available, use the two−letter language code. For French this would be vimtutor fr (if installed on the
system).

6.3. Linux in the office

6.3.1. History

Throughout the last decade the office domain has typically been dominated by MS Office, and, let's face it:
the MicroSoft Word, Excell and PowerPoint formats are industry standards that you will have to deal with
sooner or later.

This monopoly situation of MicroSoft proved to be a big disadvantage for getting new users to Linux, so a
group of German developers started the StarOffice project, that was, and is still, aimed at making an MS
Office clone. Their company, StarDivision, was acquired by Sun Microsystems by the end of the 1990s, just
before the 5.2 release. Sun continues development but restricted access to the sources. Nevertheless,
development on the original set of sources continues in the Open Source community, which had to rename the
project to OpenOffice. OpenOffice is now available for a variety of platforms, including MS Windows, Linux,
MacOS and Solaris. There is a screenshot in Section 1.3.2.

Almost simultaneously, a couple of other quite famous projects took off. Also a very common alternative to
using MS Office is KOffice, the office suite that is popular among KDE and/or SuSE users. Like the original,
this clone incorporates an MS Word and Excell compatible program, and much more.

Smaller projects deal with particular programs of the MS example suite, such as Abiword and MS Wordview
for compatibility with MS Word documents, and Gnumeric for viewing and creating Excell compatible
spreadsheets.
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6.3.2. Suites and programs

Current distributions usually come with all the necessary tools. Since these provide excellent guidelines and
searchable indexes in the Help menus, we won't discuss them in detail. For references, see you system
documentation or the web sites of the projects, such as

http://www.openoffice.org• 
http://www.koffice.org• 
Freshmeat and SourceForge for various other projects.• 

6.3.3. Remarks

6.3.3.1. General use of office documents

Try to limit the use of office documents for the purposes they were meant for: the office.

An example: it drives most Linux users crazy if you send them a mail that says in the body something like:
"Hello, I want to tell you something, see attach", and then the attachement proves to be an MS Word
compatible document like: "Hello my friend, how is your new job going and will you have time to have lunch
with me tomorrow?" Also a bad idea is the attachment of your signature in such a file, for instance. If you
want to sign messages or files, use GPG, the PGP−compatible GNU Privacy Guard or SSL (Secure Socket
Layer) certificates.

These users are not annoyed because they are unable to read these documents, or because they are worried
that these formats typically generate much larger files, but rather because of the implication that they are using
MS Windows, and possibly because of the extra work of starting some additional programs.

6.3.3.2. System and user configuration files

In the next chapter, we start configuring our environment, and this might include editing all kinds of files that
determine how a program behave.

Don't edit these files with any office component!

The default file format specification would made the program add several lines of code, defining the format of
the file and the fonts used. These lines won't be interpreted in the correct way by the programs depending on
them, resulting in errors or a crash of the program reading the file. In some cases, you can save the file as
plain text, but you'll run into trouble when making this a habit.

6.3.3.3. But I want a graphical text editor!

If you really insist, try gedit or xedit; these programs only do text files, which is what we will be needing. If
you plan on doing anything serious, though, stick to a real text mode editor such as vim or emacs.
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6.4. Summary

In this chapter we learned to use an editor. While it depends on your own individual preference which one you
use, it is necessary to at least know how to use one editor.

The vi editor is available on every UNIX system.

Most Linux distributions include an office suite and a graphical text editor.

6.5. Exercises

This chapter has only one exercise: start the Vim tutor by entering vimtutor in a terminal session, and get
started.

You may alternatively start emacs and type Ctrl+H and then T to invoke the self−paced Emacs tutorial.

Practice is the only way!
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Chapter 7. Home sweet /home

This chapter is about configuring your environment. Now that we now how to use an editor,
we can change all kinds of files to make ourselves feel better at home. After completing this
chapter, you will know more about:

Organizing your environment♦ 
Common shell setup files♦ 
Shell configuration♦ 
Configuring the prompt♦ 
Configuring the graphical environment♦ 
Sound and video applications♦ 
Display and window managers♦ 
How the X client−server system works♦ 
Language and font settings♦ 
Installing new software♦ 
Updating existing packages♦ 

7.1. General good housekeeping

7.1.1. Introduction

As we mentioned before, it is easy enough to make a mess of the system. We can't put enough stress on the
importance of keeping the place tidy. When you learn this from the start, it will become a good habit that will
save you time when programming on a Linux or UNIX system or when confronted with system management
tasks. Here are some ways of making life easier on yourself:

Make a bin directory for your program files and scripts.• 
Organize non−executable files in appropriate directories, and make as many directories as you like.
Examples include separate directories for images, documents, projects, downloaded files,
spreadsheets, personal files, and so on.

• 

Make directories private with the chmod 700dirname command.• 
Give your files sensible names, such as Complaint to the prime minister 050302
rather than letter1.

• 

7.1.2. Make space

On some systems, the quota system may force you to clean up from time to time, or the physical limits of
your hard disk may force you to make more space without running any monitoring programs. This section
discusses a number of ways, besides using the rm command, to reclaim disk space.

Run the quota −v command to see how much space is left.
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7.1.2.1. Emptying files

Sometimes the content of a file doesn't interest you, but you need the file name as a marker (for instance, you
just need the timestamp of a file, a reminder that the file was there or should be there some time in the future).
Redirecting the output of a null command is how this is done in the Bourne and Bash shells:

andy:~> cat wishlist > placeholder

andy:~> ls −la placeholder
−rw−rw−r−−    1 andy   andy       200 Jun 12 13:34 placeholder

andy:~>  > placeholder

andy:~> ls −la placeholder

−rw−rw−r−−    1 andy   andy         0 Jun 12 13:35 placeholder

The process of reducing an existing file to a file with the same name that is 0 bytes large is called
"truncating."

For creating a new empty file, the same effect is obtained with the touch command. On an existing file, touch
will only update the timestamp. See the Info pages on touch for more details.

To "almost" empty a file, use the tail command. Suppose user andy's wishlist becomes rather long because he
always adds stuff at the end but never deletes the things he actually gets. Now he only wants to keep the last
five items:

andy:~> tail −5 wishlist > newlist

andy:~> cat newlist > wishlist

andy:~> rm newlist

7.1.2.2. More about log files

Some Linux programs insist on writing all sorts of output in a log file. Usually there are options to only log
errors, or to log a minimal amount of information, for example setting the debugging level of the program.
But even then, you might not care about the log file. Here are some ways to get rid of them or at least set some
limits to their size:

Try removing the log file when the program is not running, if you are sure that you won't need it
again. Some programs may even see, when restarted, that there is no log file and will therefore not
log.

• 

If you remove the log file and the program recreates it, read the documentation for this particular
program in search for command options that avoid making log files.

• 

Try making smaller log files by logging only the information that is relevant to you, or by logging
only significant information.

• 

Try replacing the log file with a symbolic link to /dev/null; if you're lucky the program won't
complain. Don't do this with the log files of programs that run at system boot or programs that run
from cron (see Chapter 4). These programs might replace the symbolic link with a small file that starts
growing again.

• 
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7.1.2.3. Mail

Regularly clean out your mailbox, make sub−folders and automatic redirects using procmail (see the Info
pages) or the filters of your favorite mail reading application. If you have a trash folder, clean it out on a
regular basis.

To redirect mail, use the .forward file in your home directory. The Linux mail service looks for this file
whenever it has to deliver local mail. The content of the file defines what the mail system should do with your
mail. It can contain a single line holding a fully qualified E−mail address. In that case the system will send all
your mail to this address. For instance, when renting space for a website, you might want to forward the mail
destined for the webmaster to your own account in order not to waste disk space. The webmaster's
.forward may look like this:

webmaster@www ~/> cat .forward
mike@pandora.be

Using mail forwarding is also useful to prevent yourself from having to check several different mailboxes.
You can make every address point to a central and easily accessible account.

You can ask your system administrator to define a forward for you in the local mail aliases file, like when an
account is being closed but E−mail remains active for a while.

7.1.2.4. Save space with a link

When several users need access to the same file or program, when the original file name is too long or too
difficult to remember, use a symbolic link instead of a separate copy for each user or purpose.

Multiple symbolic links may have different names, e.g. a link may be called monficher in one user's
directory, and mylink in another's. Multiple links (different names) to the same file may also occur in the
same directory. This is often done in the /lib directory: when issuing the command

ls −l /lib

you will see that this directory is plenty of links pointing to the same files. These are created so that programs
searching for one name would not get stuck, so they are pointed to the correct/current name of the libraries
they need.

7.1.2.5. Limit file sizes

The shell contains a built−in command to limit file sizes, ulimit, which can also be used to display limitations
on system resources:

cindy:~> ulimit −a
core file size (blocks)     0
data seg size (kbytes)      unlimited
file size (blocks)          unlimited
max locked memory (kbytes)  unlimited
max memory size (kbytes)    unlimited
open files                  1024
pipe size (512 bytes)       8
stack size (kbytes)         8192
cpu time (seconds)          unlimited
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max user processes          512
virtual memory (kbytes)     unlimited

Cindy is not a developer and doesn't care about core dumps, which contain debugging information on a
program. If you do want core dumps, you can set their size using the ulimit command. Read the Info pages on
bash for a detailed explanation.

7.1.2.6. Compressed files

Compressed files are useful because they take less space on your hard disk. Another advantage is that it takes
less bandwidth to send a compressed file over your network. A lot of files, such as the man pages, are stored
in a compressed format on your system. Yet unpacking these to get a little bit of information and then having
to compress them again is rather time−consuming. You don't want to unpack a man page, for instance, read
about an option to a command and then compress the man page again. Most people will probably forget to
clean up after they found the information they needed.

So we have tools that work on compressed files, by uncompressing them only in memory. The actual
compressed file stays on your disk as it is. Most systems support egrep, zgrep, zcat, zmore and such to
prevent unnecessary decompressing/compressing actions. See your system's binary directory and the Info
pages.

See Chapter 9 for more on the actual compressing of files and examples on making archives.

7.2. Your text environment

7.2.1. Environment variables

7.2.1.1. General

We already mentioned a couple of environment variables, such as PATH and HOME. Until now, we only saw
examples in which they serve a certain purpose to the shell. But there are many other Linux utilities that need
information about you in order to do a good job.

What other information do programs need apart from paths and home directories?

A lot of programs want to know about the kind of terminal you are using; this information is stored in the
TERM variable. In text mode, this will be the linux terminal emulation, in graphical mode you are likely to use
xterm. Lots of programs want to know what your favorite editor is, in case they have to start an editor in a
subprocess. The shell you are using is stored in the SHELL variable, the operating system type in OS and so
on. A list of all variables currently defined for your session can be viewed entering the printenv command.

The environment variables are managed by the shell. As opposed to regular shell variables, environment
variables are inherited by any program you start, including another shell. New processes are assigned a copy
of these variables, which they can read, modify and pass on in turn to their own child processes.

There is nothing special about variable names, except that the common ones are in upper case characters by
convention. You may come up with any name you want, although there are standard variables that are
important enough to be the same on every Linux system, such as PATH and HOME.
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7.2.1.2. Exporting variables

An individual variable's content is usually displayed using the echo command, as in these examples:

debby:~> echo $PATH
/usr/bin:/usr/sbin:/bin:/sbin:/usr/X11R6/bin:/usr/local/bin

debby:~> echo $MANPATH
/usr/man:/usr/share/man/:/usr/local/man:/usr/X11R6/man

If you want to change the content of a variable in a way that is useful to other programs, you have to export
the new value from your environment into the environment that runs these programs. A common example is
exporting the PATH variable. You may declare it as follows, in order to be able to play with the flight
simulator software that is in /opt/FlightGear/bin:

debby:~> PATH=$PATH:/opt/FlightGear/bin

This instructs the shell to not only search programs in the current path, $PATH, but also in the additional
directory /opt/FlightGear/bin.

However, as long as the new value of the PATH variable is not known to the environment, things will still not
work:

debby:~> runfgfs
bash: runfgfs: command not found

Exporting variables is done using the shell built−in command export:

debby:~> export PATH

debby:~> runfgfs
−−flight simulator starts−−

In Bash, we normally do this in one elegant step:

export VARIABLE=value

The same technique is used for the MANPATH variable, that tells the man command where to look for
compressed man pages. If new software is added to the system in new or unusual directories, the
documentation for it will probably also be in an unusual directory. If you want to read the man pages for the
new software, extend the MANPATH variable:

debby:~> export MANPATH=$MANPATH:/opt/FlightGear/man

debby:~> echo $MANPATH
/usr/man:/usr/share/man:/usr/local/man:/usr/X11R6/man:/opt/FlightGear/man

You can avoid retyping this command in every window you open by adding it to one of your shell setup files,
see Section 7.2.2.
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7.2.1.3. Reserved variables

The following table gives an overview of the most common predefined variables:

Table 7−1. Common environment variables

Variable name Stored information

DISPLAY used by the X Window system to identify the display server

DOMAIN domain name

EDITOR stores your favorite line editor

HISTSIZE size of the shell history file in number of lines

HOME path to your home directory

HOSTNAME local host name

INPUTRC location of definition file for input devices such as keyboard

LANG preferred language

LD_LIBRARY_PATHpaths to search for libraries

LOGNAME login name

MAIL location of your incoming mail folder

MANPATH paths to search for man pages

OS string describing the operating system

OSTYPE more information about version etc.

PAGER
used by programs like man which need to know what to do in case output is more
than one terminal window.

PATH search paths for commands

PS1 primary prompt

PS2 secondary prompt

PWD present working directory

SHELL current shell

TERM terminal type

UID user ID

USER(NAME) user name

VISUAL your favorite full−screen editor

XENVIRONMENT location of your personal settings for X behavior

XFILESEARCHPATHpaths to search for graphical libraries

A lot of variables are not only predefined but also preset, using configuration files. We discuss these in the
next section.

7.2.2. Shell setup files

When entering the ls −al command to get a long listing of all files, including the ones starting with a dot, in
your home directory, you will see one or more files starting with a . and ending in rc. For the case of bash,
this is .bashrc. This is the counterpart of the system−wide configuration file /etc/bashrc.
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When logging into an interactive login shell, login will do the authentication, set the environment and start
your shell. In the case of bash, the next step is reading the general profile from /etc, if that file exists.
bash then looks for ~/.bash_profile, ~/.bash_login and ~/.profile, in that order, and reads
and executes commands from the first one that exists and is readable. If none exists, /etc/bashrc is
applied.

When a login shell exits, bash reads and executes commands from the file ~/.bash_logout, if it exists.

This procedure is explained in detail in the login and bash man pages.

7.2.3. A typical set of setup files

Let's look at some of these config files. First /etc/profile is read, in which important variables such as
PATH, USER and HOSTNAME are set:

debby:~> cat /etc/profile
# /etc/profile

# System wide environment and startup programs, for login setup
# Functions and aliases go in /etc/bashrc

# Path manipulation
if [ `id −u` = 0 ] && ! echo $PATH | /bin/grep −q "/sbin" ; then
    PATH=/sbin:$PATH
fi

if [ `id −u` = 0 ] && ! echo $PATH | /bin/grep −q "/usr/sbin" ; then
    PATH=/usr/sbin:$PATH
fi

if [ `id −u` = 0 ] && ! echo $PATH | /bin/grep −q "/usr/local/sbin"
    then
    PATH=/usr/local/sbin:$PATH
fi

if ! echo $PATH | /bin/grep −q "/usr/X11R6/bin" ; then
    PATH="$PATH:/usr/X11R6/bin"
fi

These lines check the path to set: if root opens a shell (user ID 0), it is checked that /sbin, /usr/sbin and
/usr/local/sbin are in the path. If not, they are added. It is checked for everyone that
/usr/X11R6/bin is in the path.

# No core files by default
ulimit −S −c 0 > /dev/null 2>&1

All trash goes to /dev/null if the user doesn't change this setting.

USER=`id −un`
LOGNAME=$USER
MAIL="/var/spool/mail/$USER"

HOSTNAME=`/bin/hostname`
HISTSIZE=1000

Introduction to Linux

Chapter 7. Home sweet /home 111



Here general variables are assigned their proper values.

if [ −z "$INPUTRC" −a ! −f "$HOME/.inputrc" ]; then
    INPUTRC=/etc/inputrc
fi

If the variable INPUTRC is not set, and there is no .inputrc in the user's home directory, then the default
input control file is loaded.

export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE INPUTRC

All variables are exported, so that they are available to other programs requesting information about your
environment.

for i in /etc/profile.d/*.sh ; do
    if [ −r $i ]; then
        . $i
    fi
done
unset i

All readable shell scripts from the /etc/profile.d directory are read and executed. These do things like
enabling color−ls, aliasing vi to vim, setting locales etc. The temporary variable i is unset to prevent it from
disturbing shell behavior later on.

Then bash looks for a .bash_profile in the user's home directory:

debby:~> cat .bash_profile 
#################################################################
#                                                               #
#   .bash_profile file                                          #
#                                                               #
#   Executed from the bash shell when you log in.               #
#                                                               #
#################################################################

source ~/.bashrc
source ~/.bash_login

This very straight forward file instructs your shell to first read ~/.bashrc and then ~/.bash_login.
You will encounter the source built−in shell command regularly when working in a shell environment: it is
used to apply configuration changes to the current environment.

The ~/.bash_login file defines default file protection by setting the umask value, see Section 3.4.2.2.
The ~/.bashrc file is used to define a bunch of user−specific aliases and functions and personal
environment variables. It first reads /etc/bashrc, which describes the default prompt (PS1) and the
default umask value. After that, you can add your own settings. If no ~/.bashrc exists, /etc/bashrc is
read by default:

debby:~> cat /etc/bashrc
# /etc/bashrc

# System wide functions and aliases
# Environment stuff goes in /etc/profile
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# by default, we want this to get set.
# Even for non−interactive, non−login shells.
if [ `id −gn` = `id −un` −a `id −u` −gt 99 ]; then
        umask 002
else
        umask 022
fi

# are we an interactive shell?
if [ "$PS1" ]; then
  if [ −x /usr/bin/tput ]; then
    if [ "x`tput kbs`" != "x" ]; then 
# We can't do this with "dumb" terminal
      stty erase `tput kbs`
    elif [ −x /usr/bin/wc ]; then
      if [ "`tput kbs|wc −c `" −gt 0 ]; then 
# We can't do this with "dumb" terminal
        stty erase `tput kbs`
      fi
    fi
  fi
  case $TERM in
        xterm*)
        if [ −e /etc/sysconfig/bash−prompt−xterm ]; then
                PROMPT_COMMAND=/etc/sysconfig/bash−prompt−xterm
        else
   PROMPT_COMMAND='echo −ne "\033]0;${USER}@${HOSTNAME%%.*}:\
${PWD/$HOME/~}\007"'
        fi
    ;;
        *)
   [ −e /etc/sysconfig/bash−prompt−default ] && PROMPT_COMMAND=\
/etc/sysconfig/bash−prompt−default
            ;;
    esac
    [ "$PS1" = "\\s−\\v\\\$ " ] && PS1="[\u@\h \W]\\$ "

    if [ "x$SHLVL" != "x1" ]; then # We're not a login shell
        for i in /etc/profile.d/*.sh; do
            if [ −x $i ]; then
                . $i
            fi
        done
    fi
fi

Upon logout, the commands in ~/.bash_logout are executed, which can for instance clear the terminal,
so that you have a clean window upon logging out of a remote session, or upon leaving the system console:

debby:~> cat .bash_logout
# ~/.bash_logout

clear

Let's take a closer look at how these scripts work in the next section. Keep info bash close at hand.
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7.2.4. The Bash prompt

7.2.4.1. Introduction

The Bash prompt can do much more than displaying such simple information as your user name, the name of
your machine and some indication about the present working directory. We can add other information such as
the current date and time, number of connected users etc.

Before we begin, however, we will save our current prompt in another environment variable:

[jerry@nowhere jerry]$ MYPROMPT=$PS1

[jerry@nowhere jerry]$ echo $MYPROMPT
[\u@\h \W]\$

[jerry@nowhere jerry]$

When we change the prompt now, for example by issuing the commandPS1="−>", we can always get our
original prompt back with the commandPS1=$MYPROMPT. You will, of course, also get it back when you
reconnect, as long as you just fiddle with the prompt on the command line and avoid putting it in a shell
configuration file.

7.2.4.2. Some examples

In order to understand these prompts and the escape sequences used, we refer to the Bash Info or man pages.

export PS1="[\t \j] "

Displays time of day and number of running jobs

• 

export PS1="[\d][\u@\h \w] : "

Displays date, user name, host name and current working directory. Note that \W displays only base
names of the present working directory.

• 

export PS1="{\!} "

Displays history number for each command.

• 

export PS1="\[\033[1;35m\]\u@\h\[\033[0m\] "

Displays user@host in pink.

• 

export PS1="\[\033[1;35m\]\u\[\033[0m\] \[\033[1;34m\]\w\[\033[0m\] "

Sets the user name in pink and the present working directory in blue.

• 

export PS1="\[\033[1;44m\]$USER is in \w\[\033[0m\] "

Prompt for people who have difficulties seeing the difference between the prompt and what they type.

• 

export PS1="\[\033[4;34m\]\u@\h \w \[\033[0m\]"

Underlined prompt.

• 

export PS1="\[\033[7;34m\]\u@\h \w \[\033[0m\] "

White characters on a blue background.

• 
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export PS1="\[\033[3;35m\]\u@\h \w \[\033[0m\]\a"

Pink prompt in a lighter font that alerts you when your commands have finished.

• 

export PS1=...• 

Variables are exported so the subsequently executed commands will also know about the environment. The
prompt configuration line that you want is best put in your shell configuration file, ~/.bashrc.

If you want, prompts can execute shell scripts and behave different under different conditions. You can even
have the prompt play a tune every time you issue a command, although this way it gets boring pretty soon.
More information can be found in the Bash−Prompt HOWTO.

7.2.5. Shell scripts

7.2.5.1. What are scripts?

A shell script is, as we saw in the shell configuration examples, a text file containing shell commands. When
such a file is used as the first non−option argument when invoking Bash, and neither the `−c' nor `−s' option is
supplied, Bash reads and executes commands from the file, then exits. This mode of operation creates a
non−interactive shell. When Bash runs a shell script, it sets the special parameter `0' to the name of the file,
rather than the name of the shell, and the positional parameters are set to the remaining arguments, if any are
given. If no additional arguments are supplied, the positional parameters are unset.

A shell script may be made executable by using the chmod command to turn on the execute bit. When Bash
finds such a file while searching the PATH for a command, it spawns a sub−shell to execute it. In other words,
executing

filename ARGUMENTS

is equivalent to executing

bash filename ARGUMENTS

if `filename' is an executable shell script. This sub−shell reinitializes itself, so that the effect is as if a new
shell had been invoked to interpret the script, with the exception that the locations of commands remembered
by the parent (see hash in the Info pages) are retained by the child.

Most versions of UNIX make this a part of the operating system's command execution mechanism. If the first
line of a script begins with the two characters `#!', the remainder of the line specifies an interpreter for the
program. Thus, you can specify bash, awk, perl or some other interpreter or shell and write the rest of the
script file in that language.

The arguments to the interpreter consist of a single optional argument following the interpreter name on the
first line of the script file, followed by the name of the script file, followed by the rest of the arguments. Bash
will perform this action on operating systems that do not handle it themselves.

Bash scripts often begin with `#! /bin/bash' (assuming that Bash has been installed in `/bin'), since this ensures
that Bash will be used to interpret the script, even if it is executed under another shell.
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7.2.5.2. Some simple examples

A very simple script consisting of only one command, that says hello to the user executing it:

[jerry@nowhere ~] cat hello.sh
#!/bin/bash
echo "Hello $USER"

The script actually consists of only one command, echo, which uses the value of ($) the USER environment
variable to print a string customized to the user issuing the command.

Another on−liner, used for displaying connected users:

#!/bin/bash
who | cut −d " " −f 1 | sort −u

Here is a script consisting of some more lines, that I use to convert wav−files to mp3−format using the lame
command. The script first makes a list of all wav−files in the current directory and puts it in the variable
LIST. Then it sets the new name for each file, and converts the file format. After that, it cleans up the
wav−files which are replaced by their mp3 counterparts:

tille:~> cat /usr/local/bin/wav2mp3 
#!/bin/bash
# convert *.wav into *.mp3
LIST=$(ls *.wav)
for i in $LIST; do
        ORIG=$i
        DEST=$(ls $i | cut −d "." −f 1).mp3 
        lame −h $ORIG $DEST
        echo "done converting $i, removing.."
        rm $i
done

The cut command is used in this example to separate the actual file name from the file name suffix. Just
entering a line like mv *.wav *.mp3 won't work. An echo command was added in order to display some
activity. echo's are generally useful when a script won't work: insert one after each doubted step and you will
find the error in no time.

The /etc/rc.d/init.d directory contains loads of examples. Let's look at this script that controls the
fictive ICanSeeYou server:

#!/bin/sh
# description: ICanSeeYou allows you to see networked people

# process name: ICanSeeYou
# pidfile: /var/run/ICanSeeYou/ICanSeeYou.pid
# config: /etc/ICanSeeYou.cfg

# Source function library.
. /etc/rc.d/init.d/functions

# See how (with which arguments) we were called.
case "$1" in
        start)
                echo −n "Starting ICanSeeYou: "
                daemon ICanSeeYou
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                echo
                touch /var/lock/subsys/ICanSeeYou
                ;;
        stop)
                echo −n "Shutting down ICanSeeYou: "
                killproc ICanSeeYou
                echo
                rm −f /var/lock/subsys/ICanSeeYou
                rm −f /var/run/ICanSeeYou/ICanSeeYou.pid
                ;;
        status)
                status ICanSeeYou
                ;;
        restart)
                $0 stop
                $0 start
                ;;
        *)
                echo "Usage: $0 {start|stop|restart|status}"
                exit 1
esac

exit 0

First, with the . command (dot) a set of shell functions, used by almost all shell scripts in
/etc/rc.d/init.d, is loaded. Then a case command is issued, which defines 4 different ways the script
can execute. An example might be ICanSeeYou start. The decision of which case to apply is made by
reading the (first) argument to the script, with the expression $1.

When no compliant input is given, the default case, marked with an asteriks, is applied, upon which the script
gives an error message. The case list is ended with the esac statement. In the start case the server program is
started as a daemon, and a process ID and lock are assigned. In the stop case, the server process is traced
down and stopped, and the lock and the PID are removed. Options, such as the daemon option, and functions
like killproc, are defined in the /etc/rc.d/init.d/functions file. This setup is specific to the
distribution used in this example. The initscripts on your system might use other functions, defined in other
files, or none at all.

Upon success, the script returns an exit code of zero to its parent.

This script is a fine example of using functions, which make the script easier to read and the work done faster.
Note that they use sh instead of bash, to make them useful on a wider range of systems. On a Linux system,
calling bash as sh results in the shell running in POSIX−compliant mode.

The bash man pages contain more information about combining commands, for− and while−loops and regular
expressions, as well as examples. A comprehensible Bash course for system administrators and power users,
with exercises, from the same author as this Introduction to Linux guide, is at
http://tille.soti.org/training/bash/. Detailed description of Bash features and applications is in the reference
guide Advanced Bash Scripting.

7.3. The graphical environment
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7.3.1. Introduction

The average user may not care too much about his login settings, but Linux offers a wide variety of flashing
window and desktop managers for use under X, the graphical environment. The use and configuration of
window managers and desktops is straightforward and may even resemble the standard MS Windows,
MacIntosh or UNIX CDE environment, although many Linux users prefer flashier desktops and fancier
window managers. We won't discuss the user specific configuration here. Just experiment and read the
documentation using the built−in Help functions these managers provide and you will get along fine.

We will, however, take a closer look at the underlying system.

7.3.2. The X Window System

The X Window System is a network−transparent window system which runs on a wide range of computing
and graphics machines. X Window System servers run on computers with bitmap displays. The X server
distributes user input to and accepts output requests from several client programs through a variety of different
interprocess communication channels. Although the most common case is for the client programs to be
running on the same machine as the server, clients can be run transparently from other machines (including
machines with different architectures and operating systems) as well. We will learn how to do this in Chapter
10 on networking and remote applications.

X supports overlapping hierarchical sub−windows and text and graphics operations, on both monochrome and
color displays. The number of X client programs that use the X server is quite large. Some of the programs
provided in the core X Consortium distribution include:

xterm: a terminal emulator• 
twm: a minimalistic window manager• 
xdm: a display manager• 
xconsole: a console redirect program• 
bitmap: a bitmap editor• 
xauth, xhost and iceauth: access control programs• 
xset, xmodmap and many others: user preference setting programs• 
xclock: a clock• 
xlsfonts and others: a font displayer, utilities for listing information about fonts, windows and
displays

• 

xfs: a font server• 
...• 

We refer again to the man pages of these commands for detailed information. More explanations on available
functions can be found in the Xlib − C language X Interface manual that comes with your X distribution, the
X Window System Protocol specification, and the various manuals and documentation of X toolkits. The
/usr/share/doc directory contains references to these documents and many others.

Many other utilities, window managers, games, toolkits and gadgets are included as user−contributed software
in the X Consortium distribution, or are available using anonymous FTP on the Internet. Good places to start
are http://www.x.org and http://www.xfree.org.

Furthermore, all your graphical applications, such as your browser, your E−mail program, your image
viewing programs, sound playing tools and so on, are all clients to your X server. Note that in normal
operation, that is in graphical mode, X clients and the X server on Linux run on the same machine.
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7.3.2.1. Display names

From the user's perspective, every X server has a display name in the form of:

hostname:displaynumber.screennumber

This information is used by the application to determine how it should connect to the X server and which
screen it should use by default (on displays with multiple monitors):

hostname: The host name specifies the name of the client machine to which the display is physically
connected. If the host name is not given, the most efficient way of communicating to a server on the
same machine will be used.

• 

displaynumber: The phrase "display" is usually used to refer to a collection of monitors that share a
common key board and pointer (mouse, tablet, etc.). Most workstations tend to only have one
keyboard, and therefore, only one display. Larger, multi−user systems, however, frequently have
several displays so that more than one person can be doing graphics work at once. To avoid
confusion, each display on a machine is assigned a display number (beginning at 0) when the X server
for that display is started. The display number must always be given in a display name.

• 

screen number: Some displays share a single keyboard and pointer among two or more monitors.
Since each monitor has its own set of windows, each screen is assigned a screen number (beginning at
0) when the X server for that display is started. If the screen number is not given, screen 0 will be
used.

• 

On POSIX systems, the default display name is stored in your DISPLAY environment variable. This variable
is set automatically by the xterm terminal emulator. However, when you log into another machine on a
network, you might need to set DISPLAY by hand to point to your display, see Section 10.3.3.

More information can be found in the X man pages.

7.3.2.2. Window and desktop managers

The layout of windows on the screen is controlled by special programs called window managers. Although
many window managers will honor geometry specifications as given, others may choose to ignore them
(requiring the user to explicitly draw the window's region on the screen with the pointer, for example).

Since window managers are regular (albeit complex) client programs, a variety of different user interfaces can
be built. The X Consortium distribution comes with a window manager named twm, but most users prefer
something more fancy when system resources permit. Sawfish and Enlightenment are popular examples
which allow each user to have a desktop according to mood and style.

A desktop manager makes use of one window manager or another for arranging your graphical desktop in a
convenient way, with menubars, drop−down menus, informative messages, a clock, a program manager, a file
manager and so on. Among the most popular desktop managers are Gnome and KDE, which both run on
almost any Linux distribution and many other UNIX systems.
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7.3.3. X server configuration

The X distribution that comes with Linux, XFree86, uses the configuration file XF86Config for its initial
setup. This file configures your video card and is searched for in a number of locations, although it is usually
in /etc/X11. This file is composed of a number of sections which may be present in any order:

Files: File pathnames• 
ServerFlags: Server options• 
Module: Dynamic module loading• 
InputDevice: Input device description• 
Device: Graphics device description• 
VideoAdapter: Video adapter description• 
Monitor: Monitor description• 
Modes: Video modes (modlines) description• 
Screen: Screen configuration• 
ServerLayout: Overall layout• 
DRI: DRI−specific configuration (3D settings)• 
Vendor: Vendor−specific configuration• 

A full description can be found in the Info or man pages about XF86Config. As a user, you needn't worry
too much about what is in this file, since everything is normally determined at the time the system is installed.

Should you need to change graphical server settings, however, you can run the configuration tools or edit the
configuration files that set up the infrastructure to use the XFree86 server. See the man pages for more
information; your distribution might have its own tools. Since misconfiguration may result in unreadable
garbage in graphical mode, you may want to make a backup copy of the XF86Config file before attempting
to change it, just to be on the safe side.

7.4. Sound and video

7.4.1. Sound card configuration

Most Linux distributions provide tools that probe your system for sound cards. Most currently available
plug−and−play sound cards should be recognized automatically. If you can hear the samples, just click OK
and everything will be set up for you.

If your card is not detected automatically, you may be presented with a list of sound cards and/or of sound
card properties from which to choose. After that, you will have to provide the correct I/O port, IRQ and DMA
settings. Information about these settings can be found in your sound card documentation. If you are on a dual
boot system with MS Windows, this information can be found in the Windows Control Panel as well.

7.4.2. If automatic sound card detection fails

If your soundcard is not supported by default, you will need to apply other techniques. These are described in
the Linux Sound HOWTO.
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7.4.3. Sound and video playing

7.4.3.1. CD playing and copying

The cdp package comes with most distributions and provides cdp or cdplay, a text−based CD player. Desktop
managers usually include a graphical tool, such as the gnome−cd player in Gnome, that can be started from a
menu.

Be sure to understand the difference between an audio CD and a data CD. You do not have to mount an audio
CD into the file system in order to listen to it. This is because the data on such a CD are not Linux file system
data; they are accessed and sent to the audio output channel directly, using a CD player program. If your CD
is a data CD containing .mp3 files, you will first need to mount it into the file system, and then use one of the
programs that we discuss below in order to play the music. How to mount CDs into the file system is
explained in Section 7.6.5.

The cdparanoia tool from the package with the same name reads audio directly as data from the CD, without
analog conversions, and writes data to a file or pipe in different formats, of which .wav is probably the most
popular. Various tools for conversion to other formats, such as .mp3, come with most distributions or are
downloadable as separate packages. The GNU project provides several CD playing, ripping and encoding
tools, database managers; see the Free Software Directory, Audio section for detailed information.

CD burning is covered in Section 9.2.2.

7.4.3.2. Playing music files

7.4.3.2.1. mp3 files

The popular .mp3 format is widely supported on Linux machines. Most distributions include multiple
programs that can play these files; xmms, which is presented in the screenshot below, is probably the most
wide−spread.

Figure 7−1. Xmms mp3 player

Some distributions don't allow you to play MP3's without modifying your configuration, this is due to license
restrictions on the MP3 tools. With the xmms player, you now need the "xmms−mp3" plugin. If error
messages indicate that licensing is the trouble, the following procedure describes the path of least resistance:

Download and install apt−get, for instance from http://www.freshrpms.net:

rpm −Uvh /var/tmp/xmms−mp3−1.2.7−21.p.fr1

• 

Run the following commands to prepare your system for use with the apt package manager:• 
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apt−get update

apt−get upgrade
Install the xmms−mp3 plugin:

apt−get install xmms−mp3

• 

(Don't forget to log out of the root account because you've finished modifying your system now) −
Play your favorite music:

xmms /my/music/dot.mp3

• 

See Section 7.6 for more on the commands for managing packages.

Both Gnome and KDE incorporate other graphical mp3 players, look in your menus.

Start xmms from a menu, or from the command line like this:

debby:~/mp3> xmms music.mp3

Alternatively, enter the command xmms *.mp3 for playing all .mp3 files in a directory.

7.4.3.2.2. Other formats

An overview of other common sound playing and manipulating software:

Ogg Vorbis: Free audio format: see the GNU audio directory for tools − they might be included in
your distribution as well.

• 

Real audio and video: realplay from RealNetworks.• 
SoX or Sound eXchange: actually a sound converter, comes with the play program. Plays .wav,
.ogg and various other formats, including raw binary formats.

• 

Playmidi: a MIDI player, see the GNU directory.• 
AlsaPlayer: from the Advanced Linux Sound Architecture project, see the AlsaPlayer web site.• 
KMediaPlayer: base for the KDE multimedia tools.• 

Check your system documentation for particular tools!

7.4.3.3. Volume control

aumix and alsamixer are two common text tools for adjusting audio controls. The alsamixer has a graphical
interface when started from the menu or as gnome−alsamixer from the command line. KMix does the same in
KDE.

Regardless of how you choose to listen to music or other sounds, remember that there may be other people
who may not be interested in hearing you or your computer. Try to be courteous, especially in office
environments. And use a quality head−set.

Introduction to Linux

Chapter 7. Home sweet /home 122

http://www.gnu.org/directory/audio/ogg/
http://real.com
http://www.alsaplayer.org


7.4.3.4. Video playing, streams and television watching

Various players are available:

xine: a free video player• 
ogle: DVD player• 
mplayer: Movie Player for Linux• 
gstreamer: upcoming project developing the GStreamer library and accompanying tools for audio
and video recording, editing and playing, to be included in Gnome. See http://www.gstreamer.net for
more.

• 

totem: plays both audio and video files, audio CDs, VCD and DVD.• 
realplay: from RealNetworks.• 
helixplay: a Real alternative, see HelixDNA.• 

Most likely, you will find one of these in your graphical menus.

For watching TV there is zapping or xawtv, among many other tools for watching and capturing TV, video
and other streams.

7.5. Region specific settings

7.5.1. Keyboard setup

Setting the keyboard layout is done using the loadkeys command for text consoles. Use your local X
configuration tool or edit the Keyboard section in XF86Config manually to configure the layout for
graphical mode. The XkbdLayout is the one you want to set:

    XkbLayout       "us"

This is the default. Change it to your local settings by replacing the quoted value with any of the names listed
in the subdirectories of /lib/kbd/keymaps/, leaving out the .map.gz extention. If you can't find the
keymaps, try displaying their location on your system issuing the command

locate .map.gz

It is possible to combine layout settings, like in this example:

Xkblayout      "us,ru"

Make a backup of the /etc/X11/XF86Config file before editing it! You will need to use the root account
to do this.

Log out and reconnect in order to reload X settings.

The Gnome Keyboard Applet enables real−time switching between layouts; no special pemissions are needed
for using this program. KDE has a similar tool for switching between keyboard layouts.
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7.5.2. Fonts

Use the setfont tool to load fonts in text mode. Most systems come with a standard inputrc file which
enables combining of characters, such as the French "é" (meta characters). The system admin should then add
the line

export INPUTRC="/etc/inputrc"

to the /etc/bashrc file.

7.5.3. Time zone

Setting time information is usually done at installation time. After that, it can be kept up to date using an NTP
(Network Time Protocol) client. Most Linux systems run ntpd by default:

debby:~> ps −ef | grep ntpd
ntp      24678     1  0  2002 ?        00:00:33 ntpd −U ntp

See your system manual and the documentation that comes with the NTP package. Most desktop managers
include tools to set the system time, providing that you have access to the system administrator's account.

7.5.4. Language

If you'd rather get your messages from the system in Dutch or French, you may want to set the LANG and
LANGUAGE environment variables, thus enabling locale support for the desired language and eventually the
fonts related to character conventions in that language.

With most graphical login systems, such as gdm or kdm, you have the possibility to configure these language
settings before logging in.

Note that on most systems, the default tends to be en_US.UTF−8 these days. This is not a problem, because
systems where this is the default, will also come with all the programs supporting this encoding. Thus, vi can
edit all the files on your system, cat won't behave strange and so on.

Trouble starts when you connect to an older system not supporting this font encoding, or when you open a
UTF−8 encoded file on a system supporting only 1−byte character fonts. The recode utility might come in
handy to convert files from one character set to another. Read the man pages for an overview of features and
usage. Another solution might be to temporarily work with another encoding definition, by setting the LANG
environment variable:

debby:~> acroread /var/tmp/51434s.pdf
Warning: charset "UTF−8" not supported, using "ISO8859−1".
Aborted

debby:~> set | grep UTF
LANG=en_US.UTF−8

debby:~> export LANG=en_US

debby:~> acroread /var/tmp/51434s.pdf
<−−new window opens−−>
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7.5.5. Specific information for Belgium

The Belgian HOWTO gives more detailed information on configuring your machine for Flanders, la Wallonie
and the Oostkantons, on how to get on the Internet in Belgium and contains a list of Belgian providers of
Linux related commercial and free services.

The Francophones HOWTO discusses the available support for the French language in−depth.

7.5.6. Other countries

The list of HOWTOs contains references to Belarusian, Chinese, Esperanto, Finnish, Hebrew, Hellenic,
Latvian, Polish, Portugese, Serbian, Slovak, Slovenian, Spanish, Thai and Turkish localization instructions.

7.6. Installing new software

7.6.1. General

Most people are surprised to see that they have a running, usable computer after installing Linux; most
distributions contain ample support for video and network cards, monitors and other external devices, so there
is usually no need to install extra drivers. Also common tools such as office suites, web browsers, E−mail
clients and such are included in the main distributions. Even so, an initial installation might not meet your
requirements.

If you just can't find what you need, maybe it is not installed on your system. It may also be that you have the
required software, but it does not do what it is supposed to do. Remember that Linux moves fast, and software
improves on a daily basis. Don't waste your time troubleshooting problems that might already be resolved.

You can update your system or add packages to it at any time you want. Most software comes in packages.
Extra software may be found on your installation CDs or on the Internet. The website of your Linux
distribution is a good place to start looking for additional software and contains instructions about how to
install it on your type of Linux, see Appendix A. Always read the documentation that comes with new
software, and any installation guidelines the package might contain. All software comes with a README file,
which you are very strongly advised to read.

7.6.2. Package formats

7.6.2.1. RPM packages

RPM, the RedHat Package Manager, is a powerful package manager that you can use to install, update and
remove packages. It allows you to search for packages and keeps track of the files that come with each
package. A system is built−in so that you can verify the authenticity of packages downloaded from the
Internet. Advanced users can build their own packages with RPM.

An RPM package consists of an archive of files and meta−data used to install and erase the archive files. The
meta−data includes helper scripts, file attributes, and descriptive information about the package. Packages
come in two varieties: binary packages, used to encapsulate software to be installed, and source packages,
containing the source code and recipe necessary to produce binary packages.
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Many other distributions support RPM packages, among the popular ones Mandrake and SuSE Linux. Apart
from the advice for your distribution, you will want to read man rpm.

Most packages are simply installed with the upgrade option, −U, whether the package is already installed or
not. The RPM package contains a complete version of the program, which overwrites existing versions or
installs as a new package. The typical usage is as follows:

rpm −Uvh /path/to/rpm−package(s)

The −v option generates more verbose output, and −h makes rpm print a progress bar:

[root@jupiter tmp]# rpm −Uvh totem−0.99.5−1.fr.i386.rpm
Preparing...                ########################################### [100%]
   1:totem                  ########################################### [100%]
[root@jupiter tmp]#

New kernel packages, however, are installed with the install option −i, which does not overwrite existing
version(s) of the package, least to be able to boot your system with the old kernel if the new one does not
work.

You can also use rpm to check whether a package is installed on your system:

[david@jupiter ~] rpm −qa | grep vim
vim−minimal−6.1−29
vim−X11−6.1−29
vim−enhanced−6.1−29
vim−common−6.1−29

Or you can find out which package contains a certain file or executable:

[david@jupiter ~] rpm −qf /etc/profile
setup−2.5.25−1

[david@jupiter ~] which cat
cat is /bin/cat

[david@jupiter ~] rpm −qf /bin/cat
coreutils−4.5.3−19

Note that you need not have access to administrative privileges in order to use rpm to query the RPM
database. You only need to be root when adding, modifying or deleting packages.

Below is one last example, demonstrating how to uninstall a package using rpm:

[root@jupiter root]# rpm −e totem
[root@jupiter root]#

Note that uninstalling is not that verbose by default, it is normal that you don't see much happening. When in
doubt, use rpm −qa again to verify that the package has been removed.

RPM can do much more than the couple of basic functions we discussed in this introduction; the RPM
HOWTO contains further references.

Introduction to Linux

Chapter 7. Home sweet /home 126

http://www.ibiblio.org/mdw/HOWTO/RPM-HOWTO/index.html
http://www.ibiblio.org/mdw/HOWTO/RPM-HOWTO/index.html


7.6.2.2. DEB packages

This package format is the default on Debian GNU/Linux, where dselect is the standard tool for managing the
packages. It is used to select packages that you want to install or upgrade, but it will also run during the
installation of a Debian system and help you to define the access method to use, to list available packages and
to configure packages.

The Debian web site contains all information you need, including a "dselect Documentation for Beginners".

7.6.2.3. Source packages

The largest part of Linux programs is Free/Open Source, so source packages are available for these programs.
Source files are needed for compiling your own program version. Sources are provided when you install
development packages or can be downloaded from the particular web site for a program, in the raw
(program−version.tar.gz or similar) or packaged in an RPM or Debian package.

Specific requirements, dependencies and installation instructions are provided in the README file. You will
probably need a C compiler, gcc. This GNU C compiler is included in most Linux systems and is ported to
many other platforms.

7.6.3. Automating package management and updates

7.6.3.1. General remarks

The first thing you do after installing a new system is applying updates; this applies to all operating systems
and Linux is not different.

The updates for most Linux systems can usually be found on a nearby site mirroring your distribution. Lists of
sites offering this service can be found at your distribution's web site, see Appendix A.

Updates should be applied regularly, daily if possible − but every couple of weeks would be a reasonable
start. You really should try to have the most recent versions of all packages, since Linux changes constantly.
As we said before, new features, improvements and bug fixes are supplied at a steady rhythm, and sometimes
important security problems are addressed. All this not because Linux is a sloppy system, but rather because
the Linux user is not easily satisfied. We want our software to be the best, but getting there and staying there
demands some flexibility.

The good news is that most Linux distributions provide tools so that you don't have to upgrade tens of
packages daily by hand. The following sections give an overview of "package manager managers." There is
much more to this subject, even regular updates of source packages is manageable automatically; we only list
the most commonly known systems. Always refer to the documentation for your specific distribution for
advised procedures.

7.6.3.2. APT

The Advanced Package Tool is a management system for software packages. The command line tool for
handling packages is apt−get, which comes with an excellent man page describing how to install and update
packages and how to upgrade singular packages or your entire distribution. APT has its roots in the Debian
GNU/Linux distribution, where it is the default manager for the Debian packages. APT has been ported to
work with RPM packages as well. The main advantage of APT is that it is free and flexible to use. It will
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allow you to set up systems similar to the distribution specific (and in some cases commercial) ones listed in
the next sections.

Generally, when first using apt−get, you will need to get an index of the available packages. This is done
using the command

apt−get update

After that, you can use apt−get to upgrade your system:

apt−get upgrade

Do this often, it's an easy way to keep your system up−to−date and thus safe.

Apart from this general usage, apt−get is also very fast for installing individual packages. This is how it
works:

[david@jupiter ~] su − −c "apt−get install xsnow"
Password:
Reading Package Lists... Done
Building Dependency Tree... Done
The following NEW packages will be installed:
  xsnow
0 packages upgraded, 1 newly installed, 0 removed and 3 not upgraded.
Need to get 33.6kB of archives.
After unpacking 104kB of additional disk space will be used.
Get:1 http://ayo.freshrpms.net redhat/9/i386/os xsnow 1.42−10 [33.6kB]
Fetched 33.6kB in 0s (106kB/s)
Executing RPM (−Uvh)...
Preparing...                ########################################### [100%]
   1:xsnow                  ########################################### [100%]

Note the −c option to the su command, which indicates to the root shell to only execute this command, and
then return to the user's environment. This way, you cannot forget to quit the root account.

If there are any dependencies on other packages, apt−get will download and install these supporting
packages.

More information can be found in the APT HOWTO.

7.6.3.3. Systems supporting RPM packages

Update Agent, which originally only supported RedHat RPM packages, is now ported to a wider set of
software, including non−RedHat repositories. This tool provides a complete system for updating the RPM
packages on a RedHat or Fedora Linux system. On the command line, type up2date to update your system.
On the desktop, by default a small icon is activated, telleng you whether or not there are updates available for
your system.

Yellowdog's Updater Modified (yum) is another tool that recently became more popular. It is an interactive
but automated update program for installing, updating or removing RPM packages on a system.

On SuSE Linux, everything is done with YaST, Yet another Setup Tool, which supports a wide variety of
system administration tasks, among which updating RPM packages. Starting from SuSE Linux 7.1 you can
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also upgrade using a web interface and YOU, Yast Online Update.

Mandrake Linux provides so−called URPMI tools, a set of wrapper programs that make installing new
software easier for the user. These tools combine with RPMDrake and MandrakeUpdate to provide everything
needed for smooth install and uninstall of software packages. MandrakeOnline offers an extended range of
services and can automatically notify administrators when updates are available for your particular Mandrake
system. Also the KDE and Gnome desktop suites have their own (graphical) versions of package managers,
such as gnorpm and KPackage.

Ximian, a Linux desktop software vendor, has developed RedCarpet, a graphical tool that you can use to
subscribe to different upgrade "channels". Different channels are available for upgrading a series of Linux
distributions and versions, and for upgrading individual Ximian products, such as the Ximian desktop, the
E−mail client Evolution, the upgrade tool itself and much more.

Ximian currently supports RedHat, Debian, Mandrake, Solaris, SuSE and YellowDog systems.

7.6.4. Upgrading your kernel

Most Linux installations are fine if you periodically upgrade your distribution. The upgrade procedure will
install a new kernel when needed and make all necessary changes to your system. You should only compile or
install a new kernel manually if you need kernel features that are not supported by the default kernel included
in your Linux distribution.

Whether compiling your own optimized kernel or using a pre−compiled kernel package, install it in
co−existence with the old kernel until you are sure that everything works according to plan.

Then create a dual boot system that will allow you to choose which kernel to boot by updating your boot
loader configuration file grub.conf. This is a simple example:

# grub.conf generated by anaconda
#
# Note that you do not have to rerun grub after making config changes. 
# NOTICE:  You have a /boot partition.  This means that
#          all kernel and initrd paths are relative to /boot/, e.g.
#          root (hd0,0)
#          kernel /vmlinuz−version ro root=/dev/hde8
#          initrd /initrd−version.img
#boot=/dev/hde
default=0
timeout=10
splashimage=(hd0,0)/grub/splash.xpm.gz
title Red Hat Linux new (2.4.9−31)
        root (hd0,0)
        kernel /vmlinuz−2.4.9−31 ro root=/dev/hde8
        initrd /initrd−2.4.9−31.img
title old−kernel
        root (hd0,0)
        kernel /vmlinuz−2.4.9−21 ro root=/dev/hde8
        initrd /initrd−2.4.9−21.img

After the new kernel has proven to work, you may remove the lines for the old one from the GRUB config
file, although it is best to wait a couple of days just to be sure.
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7.6.5. Installing extra packages from the installation CDs

7.6.5.1. Mounting a CD

This is basically done in the same way as installing packages manually, except that you have to append the
file system of the CD to your machine's file system to make it accessible. On most systems, this will be done
automatically upon insertion of a CD in the drive because the automount daemon is started up at boot time. If
your CD is not made available automatically, issue the mount command in a terminal window. Depending on
your actual system configuration, a line similar to this one will usually do the trick:

mount /dev/cdrom /mnt/cdrom

On some systems, only root can mount removable media; this depends on the configuration.

For automation purposes, the CD drive usually has an entry in /etc/fstab, which lists the file systems and
their mount points, that make up your file system tree. This is such a line:

[david@jupiter ~] grep cdrom /etc/fstab
/dev/cdrom      /mnt/cdrom      iso9660         noauto,owner,ro 0 0

This indicates that the system will understand the command mount /mnt/cdrom. The noauto means that
on this system, CDs are not mounted automatically.

You may even try to right click on the CD icon on your desktop to mount the CD if your file manager doesn't
do it for you. You can check whether it worked issuing the mount command with no arguments:

[david@jupiter ~] mount | grep cdrom
/dev/cdrom on /mnt/cdrom type iso9660 (ro,nosuid,nodev)

7.6.5.2. Using the CD

After mounting the CD, you can change directories, usually to the mount point /mnt/cdrom, where you can
access the content of the CD−ROM. Use rpm just like described in the above section to install additional
packages.

7.6.5.3. Ejecting the CD

In order to get the CD out of the drive after you've finished using it, the file system on the CD should be
unused. Even being in one of the subdirectories of the mount point, /mnt/cdrom in our example, will be
considered as "using the file system", so you should get out of there. Do this for instance by typing cd with no
arguments, which will put you back in your home directory. After that, you can either use the command

umount /mnt/cdrom

or

eject cdrom

Blocked drives
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NEVER force the drive. The trick with the paperclip is a bad idea, because this will eventually expunge
the CD, but your system will think the CD is still there because normal procedures were not followed.
Chances are likely that you will have to reboot to get the system back in a consistent state.

If you keep getting "device busy" messages, check first that all shell sessions have left the CD file
system and that no graphical applications are using it anymore. When in doubt, use the lsof tool to trace
down the process(es) still using the CD resource.

7.7. Summary

When everything has its place, that means already half the work is done.

While keeping order is important, it is equally important to feel at home in your environment, whether text or
graphical. The text environment is controlled through the shell setup files. The graphical environment is
primarily dependent on the X server configuration, on which a number of other applications are built, such as
window and desktop managers and graphical applications, each with their own config files. You should read
the system and program specific documentation to find out about how to configure them.

Regional settings such as keyboard setup, installing appropriate fonts and language support are best done at
installation time.

Software is managed either automatically or manually using a package system.

7.8. Exercises

7.8.1. Shell environment

Print out your environment settings. Which variable may be used to store the CPU type of your
machine?

• 

Make a script that can say something on the lines of "hello, world." Give it appropriate permissions so
it can be run. Test your script.

• 

Create a directory in your home directory and move the script to the new directory. Permanently add
this new directory to your search path. Test that the script can be executed without giving a path to its
actual location.

• 

Create subdirectories in your home directory to store various files, for instance a directory music to
keep audio files, a directory documents for your notes, and so on. And use them!

• 

Create a personalized prompt.• 
Display limits on resource usage. Can you change them?• 
Try to read compressed man pages without decompressing them first.• 
Make an alias lll which actually executes ls −la.• 
Why does the command tail testfile > testfile not work?• 
Mount a data CD, such as your Linux installation CD, and have a look around. Don't forget to
unmount when you don't need it anymore.

• 

7.8.2. Graphical environment

Try all the mouse buttons in different regions (terminal, background, task bar).• 
Explore the menus.• 
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Customize your terminal window.• 
Use the mouse buttons to copy and paste text from one terminal to another.• 
Find out how to configure your window manager; try different workspaces (virtual screens).• 
Add an applet, such as a load monitor, to the task bar.• 
Apply a different theme.• 
Enable the so−called sloppy focus.• 
Switch to a different window manager.• 
Log out and select a different session type, like KDE if you were using Gnome before. Repeat the
previous steps.

• 

Find an audio CD or a DVD or such, and try to play it.• 

Introduction to Linux

Chapter 7. Home sweet /home 132



Chapter 8. Printers and printing

In this chapter we will learn more about printers and printing files. After reading this part, you
will be able to:

Format documents♦ 
Print files and check on printer status♦ 
Troubleshoot printing problems♦ 
Find necessary documentation to install a printer♦ 

8.1. Printing files

8.1.1. General

RedHat ships with LPRng, an improved version of the well−known UNIX print system. If the printer has been
set up, all you need to do is learn how to use lpr to send files to the printer, which basically comes down to

lpr file(s)

Lpr uses a spooling daemon, lpd to print the named files when facilities become available. If no names
appear, standard input is assumed (such as when the output of a command is piped into lpr). The lpr
command has a lot of options, which can be displayed using the −−help option. Full information is in the
Info pages. You will also find the lp command on your Linux system, for compatibility reasons with other
(UNIX) programs. You will find that lp is in fact a symbolic link to lpr:

davy:~> ls −l /usr/bin/lp*
lrwxrwxrwx  1 root    root        3 Oct 28 14:21 /usr/bin/lp −> lpr
−rwxr−xr−x  1 lp      lp     395192 Aug 11  2001 /usr/bin/lpq
−rwxr−xr−x  1 lp      lp     408536 Aug 11  2001 /usr/bin/lpr
−rwxr−xr−x  1 lp      lp     392984 Aug 11  2001 /usr/bin/lprm
−rwxr−xr−x  1 root    root     4651 Oct 19 22:17 /usr/bin/lprsetup.sh
−rwxr−xr−x  1 lp      lp     398488 Aug 11  2001 /usr/bin/lpstat
davy:~> ps −ef | grep lpd
lp        1003     1  0 Feb22 ?        00:00:00 lpd Waiting

Once the file is accepted in the print queue, an identification number for the print job is assigned:

davy:~> lp /etc/profile
request id is davy@blob+253

To view (query) the print queue, use the lpq command. When entered without arguments, it displays the
contents of the default print queue.

davy:~> lpq
Printer: lp@blob
 Queue: no printable jobs in queue
 Status: job 'cfA284blob.somewhere.org' removed at 11:02:47.098

If you don't like what you see, use lprm to delete jobs. Use lprm − to delete all jobs which you submitted. If
you only want to cancel one job, use the number of that job as an argument to lprm.
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In larger environments, lpc may be used to control multiple printers. See the Info on each command.

There are many GUI print tools used as a front−end to lpr, and most graphical applications have a print
function that uses lpr. See the built−in Help functions and program specific documentation for more.

8.1.2. Formatting

8.1.2.1. Tools

If we want to get something sensible out of the printer, files should be formatted first. Apart from an
abundance of formatting software, Linux comes with the basic UNIX formatting tools and languages.

Most markup languages are more suitable for large or repetitive jobs, where the computer controls the layout
of the text, like when executing scripts.

groff: GNU version of the UNIX roff command. It is a front−end to the groff document formatting
system. Normally it runs the troff command and a post−processor appropriate for the selected device.
It allows generation of PostScript files.

• 

TeX and the macro package LaTeX: one of the most widely used markup languages on UNIX systems.
Usually invoked as tex, it formats files and outputs a corresponding device−independent
representation of the typeset document.

Technical works are still frequently written in LaTeX because of its support for mathematic formulas,
although efforts are being made at W3C (the World Wide Web Consortium) to include this feature in
other applications.

• 

SGML and XML: Free parsers are available for UNIX and Linux. XML is the next generation SGML,
it forms the basis for DocBook XML, a document system (this book is written in XML, for instance).

• 

Linux comes with a lot of formatting tools, such as pdf2ps, fax2ps and a2ps.

Apart from these command line tools there are a lot of graphical word processing programs. Several complete
office suites are available, many are free. These do the formatting automatically upon submission of a print
job. Just to name a few: AbiWord, KWord, StarOffice, OpenOffice, Applix, WordPerfect, etc.

Printing documentation

The man pages contain pre−formatted troff data, they have to be formatted as well. Printing is done
using the −t option:

man −t command > man−command.ps

Then print the PostScript file. If a default print destination is configured for your system/account, you
can just issue the command man −tcommand to send the formatted page to the printer directly.

For printing Info pages, refer to the Info pages on info (you will need the source code of the command).
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8.1.2.2. Previewing formatted files

Anything you can send to the printer, can normally be sent to the screen as well. Depending on the file format,
you can use one of these commands:

PostScript files: with the gv (GhostView) command.• 
TeX dvi files: with xdvi.• 
PDF files: xpdf or Adobe's viewer, acroread, which is also available for free.• 

8.2. The server side

8.2.1. General

Until a couple of years ago, the choice for Linux users was simple: everyone ran the same old LPD, lifted
mostly verbatim out of BSD's Net−2 code.

Today there are a number of systems to choose from. Some distributions come with LPRng, the original BSD
UNIX Line Printer Daemon (LPD) revisited. LPD is also the name given to the network printing protocol.
This network protocol is spoken not only by the LPD daemon itself, but by essentially every networked
print−server, networked printer, and every other print spooler out there; LPD is the least common
denominator of standards−based network printing.

LPRng is a far better implementation of the basic LPD design than the regular one; if you must use LPD,
consider using LPRng instead. There is far less voodoo involved in making it do what you want, and what
voodoo there is is well documented.

LPRng is easier to administer for large installations (read: more than one printer, any serial printers, or any
peculiar non−lpd network printers) and has a less haphazard code base than does stock lpd. It can even
honestly claim to be secure − there are no SUID binaries, and it supports authentication via PGP or Kerberos.

An interesting new project is the Common UNIX Print System, an implementation of the Internet Printing
Protocol (IPP), an HTTP−like RFC standard replacement protocol for the venerable (and clunky) LPD
protocol. CUPS is distributed under the GNU Public License. CUPS is also the default print system on
MacOS X.

More information can be found at the CUPS homepage.

8.2.2. Graphical printer configuartion

Most distributions come with a GUI for configuring networked and local (parallel port) printers. They let you
choose the printer type from a list and allow easy testing. You don't have to bother about syntax and location
of configuration files. Check your system documentation before you attempt installing your printer.

8.2.3. Buying a printer for Linux

The Linux kernel will let you speak with any printer that you can plug into a serial, parallel, or USB port, plus
any printer on the network, but this alone is insufficient; you must also be able to generate data that the printer
will understand.
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Linux supports almost any HP− and/or IBM−compatible printer. Generally, all printers that can be used on
Windows NT or UNIX are fit for Linux as well.

Printers that only come with a Win9x driver could be problematic if they have no other support. Check with
the hardware compatibility HOWTO when in doubt.

Your best choice would be a printer with native PostScript support in the firmware, since nearly all UNIX or
Linux software producing printable output, produces it in PostScript, the publishing industry's printer control
language of choice. PostScript printers are usually a bit more expensive, but it is a device−independent, open
programming language.

8.3. Print problems

In this section, we will discuss what you can do as a user when something goes wrong. We won't discuss any
problems that have to do with the daemon−part of the printing service, as that is a task for system
administrators.

8.3.1. Wrong file

If you print the wrong file, the job may be canceled using the command lprm jobID, where jobID is in the
form printername−printjobnumber (get it from information displayed by lpq). This will work when other jobs
are waiting to be printed in this printer's queue. However, you have to be really quick if you are the only one
using this printer, since jobs are usually spooled and send to the printer in only seconds. Once they arrive on
the printer, it is too late to remove jobs using Linux tools.

8.3.2. My print hasn't come out

Use the lpq command and see if you can spot your job:

elly:~> lpq
Printer: lp@blob
 Queue: 2 printable jobs
 Server: pid 29998 active
 Unspooler: pid 29999 active
 Status: waiting for subserver to exit at 09:43:20.699
 Rank   Owner/ID             Class Job Files          Size Time
1      elly@blob+997           A   997 (STDIN)         129 09:42:54
2      elly@blob+22            A    22 /etc/profile    917 09:43:20

Lots of printers have web interfaces these days, which can display status information by typing the printer's IP
address in your web browser:

Figure 8−1. Printer Status through web interface
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If your job ID is not there and not on the printer, contact your system administrator. If your job ID is listed in
the output, check that the printer is currently printing. If so, just wait, your job will get done in due time.

If the printer is not printing, check that it has paper, check the physical connections to both electricity and data
network. If that's okay, the printer may need restarting. Ask your system admin for advice.

In the case of a network printer, try printing from another host. If the printer is reachable from your own host
(see Chapter 10 for the ping utility), you may try to put the formatted file on it, like file.ps in case of a
PostScript printer, using an FTP client. If that works, your print system is misconfigured. If it doesn't work,
maybe the printer doesn't understand the format you are feeding it.

The GNU/Linux Printing site contains more tips and tricks.
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8.4. Summary

The Linux print service comes with a set of printing tools based on the standard UNIX LPD tools. Below is a
list of print−related commands.

Table 8−1. Printing related commands

Command Meaning

lpr Print file

lpq Query print queue

lprm Remove print job

acroread PDF viewer

groff Formatting tool

gv PostScript viewer

printconf Configure printers

xdvi DVI viewer

xpdf PDF viewer

*2ps Convert file to PostScript

8.5. Exercises

Configuring and testing printers involves being in the possession of one, and having access to the root
account. If so, you may try:

Installing the printer using the GUI on your system.• 
Printing a test page using the GUI.• 
Printing a test page using the lp command.• 
Print from within an application, for example Mozilla or OpenOffice, by choosing File−>Print from
the menu.

• 

Disconnect the printer from the network or the local machine/print−server. What happens when you
try to print something?

• 

The following exercises can be done without printer or root access.

Try to make PostScript files from different source files, (e.g. HTML, PDF, man pages). Test the
results with the gv viewer.

• 

Check that the print daemon is running.• 
Print the files anyway. What happens?• 
Make a PostScript file using Mozilla. Test it with gv.• 
Convert it to PDF format. Test with xpdf.• 
How would you go about printing a GIF file from the command line?• 
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Chapter 9. Fundamental Backup Techniques

Accidents will happen sooner or later. In this chapter, we'll discuss how to get data to a safe
place using other hosts, floppy disks, CD−ROMs and tapes. We will also discuss the most
popular compressing and archiving commands.

Upon completion of this chapter, you will know how to:

Make, query and unpack file archives♦ 
Handle floppy disks and make a boot disk for your system♦ 
Write CD−ROMs♦ 
Make incremental backups♦ 
Create Java archives♦ 
Find documentation to use other backup devices and programs♦ 

9.1. Introduction

Although Linux is one of the safest operating systems in existence, and even if it is designed to keep on going,
data can get lost. Data loss is most often the consequence of user errors, but occasionally a system fault, such
as a power failure, is the cause, so it's always a good idea to keep an extra copy of sensitive and/or important
data.

9.1.1. Preparing your data

9.1.1.1. Archiving with tar

In most cases, we will first collect all the data to back up in a single archive file, which we will compress later
on. The process of archiving involves concatenating all listed files and taking out unnecessary blanks. In
Linux, this is commonly done with the tar command. tar was originally designed to archive data on tapes, but
it can also make archives, know as tarballs.

tar has many options, the most important ones are cited below:

−v: verbose• 
−t: test, shows content of a tarball• 
−x: extract archive• 
−c: create archive• 
−f archivedevice: use archivedevice as source/destination for the tarball, the device
defaults to the first tape device (usually /dev/st0 or something similar)

• 

−j: filter through bzip2, see Section 9.1.1.2• 

It is common to leave out the dash−prefix with tar options, as you can see from the examples below.

Use GNU tar for compatibility

The archives made with a proprietary tar version on one system, may be incompatible with tar on
another proprietary system. This may cause much headaches, such as if the archive needs to be
recovered on a system that doesn't exist anymore. Use the GNU tar version on all systems to prevent
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your system admin from bursting into tears. Linux always uses GNU tar. When working on other UNIX
machines, enter tar −−help to find out which version you are using. Contact your system admin if you
don't see the word GNU somewhere.

In the example below, an archive is created and unpacked.

gaby:~> ls images/
me+tux.jpg  nimf.jpg

gaby:~> tar cvf images−in−a−dir.tar images/
images/
images/nimf.jpg
images/me+tux.jpg

gaby:~> cd images

gaby:~/images> tar cvf images−without−a−dir.tar *.jpg
me+tux.jpg
nimf.jpg

gaby:~/images> cd

gaby:~> ls */*.tar
images/images−without−a−dir.tar

gaby:~> ls *.tar
images−in−a−dir.tar 

gaby:~> tar xvf images−in−a−dir.tar 
images/
images/nimf.jpg
images/me+tux.jpg

gaby:~> tar tvf images/images−without−dir.tar 
−rw−r−−r−− gaby/gaby  42888 1999−06−30 20:52:25 me+tux.jpg
−rw−r−−r−− gaby/gaby   7578 2000−01−26 12:58:46 nimf.jpg

gaby:~> tar xvf images/images−without−a−dir.tar 
me+tux.jpg
nimf.jpg

gaby:~> ls *.jpg
me+tux.jpg  nimf.jpg

This example also illustrates the difference between a tarred directory and a bunch of tarred files. It is
advisable to only compress directories, so files don't get spread all over when unpacking the tarball (which
may be on another system, where you may not know which files where already there and which are the ones
from the archive).

When a tape drive is connected to your machine and configured by your system administrator, the file names
ending in .tar are replaced with the tape device name, for example:

tar cvf /dev/tape mail/

The directory mail and all the files it contains are compressed into a file that is written on the tape
immediately. A content listing is displayed because we used the verbose option.
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9.1.1.2. Incremental backups with tar

The tar tool supports the creation of incremental backups, using the −N option. With this option, you can
specify a date, and tar will check modification time of all specified files against this date. If files are changed
more recent than date, they will be included in the backup. The example below uses the timestamp on a
previous archive as the date value. First, the initial archive is created and the timestamp on the initial backup
file is shown. Then a new file is created, upon which we take a new backup, containing only this new file:

jimmy:~> tar cvpf /var/tmp/javaproggies.tar java/*.java
java/btw.java
java/error.java
java/hello.java
java/income2.java
java/income.java
java/inputdevice.java
java/input.java
java/master.java
java/method1.java
java/mood.java
java/moodywaitress.java
java/test3.java
java/TestOne.java
java/TestTwo.java
java/Vehicle.java

jimmy:~> ls −l /var/tmp/javaproggies.tar
−rw−rw−r−− 1 jimmy   jimmy   10240 Jan 21 11:58 /var/tmp/javaproggies.tar

jimmy:~> touch java/newprog.java

jimmy:~> tar −N /var/tmp/javaproggies.tar \
−cvp /var/tmp/incremental1−javaproggies.tar java/*.java 2> /dev/null
java/newprog.java

jimmy:~> cd /var/tmp/

jimmy:~> tar xvf incremental1−javaproggies.tar
java/newprog.java

Standard errors are redirected to /dev/null. If you don't do this, tar will print a message for each
unchanged file, telling you it won't be dumped.

This way of working has the disadvantage that it looks at timestamps on files. Say that you download an
archive into the directory containing your backups, and the archive contains files that have been created two
years ago. When checking the timestamps of those files against the timestamp on the initial archive, the new
files will actually seem old to tar, and will not be included in an incremental backup made using the −N
option.

A better choice would be the −g option, which will create a list of files to backup. When making incremental
backups, files are checked against this list. This is how it works:

jimmy:~> tar cvpf work−20030121.tar −g snapshot−20030121 work/
work/
work/file1
work/file2
work/file3
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jimmy:~> file snapshot−20030121
snapshot−20030121: ASCII text

The next day, user jimmy works on file3 a bit more, and creates file4. At the end of the day, he makes a
new backup:

jimmy:~> tar cvpf work−20030122.tar −g snapshot−20030121 work/
work/
work/file3
work/file4

These are some very simple examples, but you could also use this kind of command in a cronjob (see Section
4.4.4), which specifies for instance a snapshot file for the weekly backup and one for the daily backup.
Snapshot files should be replaced when taking full backups, in that case.

More information can be found in the tar documentation.

9.1.1.3. Compressing and unpacking with gzip or bzip2

Data, including tarballs, can be compressed using zip tools. The gzip command will add the suffix .gz to the
file name and remove the original file.

jimmy:~> ls −la | grep tar
−rw−rw−r−− 1 jimmy  jimmy    61440 Jun  6 14:08 images−without−dir.tar

jimmy:~> gzip images−without−dir.tar

jimmy:~> ls −la images−without−dir.tar.gz 
−rw−rw−r−− 1 jimmy  jimmy    50562 Jun  6 14:08 images−without−dir.tar.gz

Uncompress gzipped files with the −d option.

bzip2 works in a similar way, but uses an improved compression algorithm, thus creating smaller files. See
the bzip2 info pages for more.

Linux software packages are often distributed in a gzipped tarball. The sensible thing to do after unpacking
that kind of archives is find the README and read it. It will generally contain guidelines to installing the
package.

The GNU tar command is aware of gzipped files. Use the command

tar zxvf file.tar.gz

for unzipping and untarring .tar.gz or .tgz files. Use

tar jxvf file.tar.bz2

for unpacking tar archives that were compressed with bzip2.
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9.1.1.4. Java archives

The GNU project provides us with the jar tool for creating Java archives. It is a Java application that
combines multiple files into a single JAR archive file. While also being a general purpose archiving and
compression tool, based on ZIP and the ZLIB compression format, jar was mainly designed to facilitate the
packing of Java code, applets and/or applications in a single file. When combined in a single archive, the
components of a Java application, can be downloaded much faster.

Unlike tar, jar compresses by default, independent from other tools − because it is basically the Java version
of zip. In addition, it allows individual entries in an archive to be signed by the author, so that origins can be
authenticated.

The syntax is almost identical as for the tar command, we refer to info jar for specific differences.

tar, jar and symbolic links

One noteworthy feature not really mentioned in the standard documentation is that jar will
follow symbolic links. Data to which these links are pointing will be included in the archive. The
default in tar is to only backup the symbolic link, but this behavior can be changed using the −h
to tar.

9.1.1.5. Transporting your data

Saving copies of your data on another host is a simple but accurate way of making backups. See Chapter 10,
Communications, for more information on scp, ftp and many more.

In the next section we'll discuss local backup devices.

9.2. Moving your data to a backup device

9.2.1. Making a copy on a floppy disk

9.2.1.1. Formatting the floppy

On most Linux systems, users have access to the floppy disk device. The name of the device may vary
depending on the size and number of floppy drives, contact your system admin if you are unsure. On sensibly
administered systems, there will likely be a link /dev/floppy pointing to the right device, probably
/dev/fd0 (the auto−detecting floppy device) or /dev/fd0H1440 (set for 1,44MB floppies).

fdformat is the low−level floppy disk formatting tool. It has the device name of the floppy disk as an option.
fdformat will display an error when the floppy is write−protected.

emma:~> fdformat /dev/fd0H1440
Double−sided, 80 tracks, 18 sec/track. Total capacity 1440 kB.
Formatting ... done
Verifying ... done
emma:~>

The mformat command (from the mtools package) is used to create DOS−compatible floppies which can
then be accessed using the mcopy, mdir and other m−commands.
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Graphical tools are also available.

Figure 9−1. Floppy formatter

After the floppy is formatted, it can be mounted into the file system and accessed as a normal, be it small,
directory, usually via the /mnt/floppy entry.

Almost every Linux distribution provides the mkbootdisk utility, which makes a floppy from which the
current system can boot.

9.2.1.2. Using the dd command to dump data

The dd command can be used to put data on a disk, or get it off again, depending on the given input and
output devices. An example:

gaby:~> dd if=images−without−dir.tar.gz of=/dev/fd0H1440
98+1 records in
98+1 records out

gaby~> dd if=/dev/fd0H1440 of=/var/tmp/images.tar.gz
2880+0 records in
2880+0 records out

gaby:~> ls /var/tmp/images*
/var/tmp/images.tar.gz

Note that the dumping is done on an unmounted device. Floppies created using this method will not be
mountable in the file system, but it is of course the way to go for creating boot or rescue disks. For more
information on the possibilities of dd, read the man pages.

This tool is part of the GNU fileutils package.

Dumping disks

The dd command can also be used to make a raw dump of an entire hard disk.
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9.2.2. Making a copy with a CD−writer

On some systems users are allowed to use the CD−writer device. Your data will need to be formatted first.
Use the mkisofs command to do this in the directory containing the files you want to backup. Check with df
that enough disk space is available, because a new file about the same size as the entire current directory will
be created:

[rose@blob recordables] df −h .
Filesystem            Size  Used Avail Use% Mounted on
/dev/hde5              19G   15G  3.2G  82% /home

[rose@blob recordables] du −h −s .
325M    .

[rose@blob recordables] mkisofs −J −r −o cd.iso .
<−−snap−−>
making a lot of conversions
<−−/snap−−>
98.95% done, estimate finish Fri Apr  5 13:54:25 2002
Total translation table size: 0
Total rockridge attributes bytes: 35971
Total directory bytes: 94208
Path table size(bytes): 452
Max brk space used 37e84
166768 extents written (325 Mb)

The −J and −r options are used to make the CD−ROM mountable on different systems, see the man pages
for more. After that, the CD can be created using the cdrecord tool with appropriate options:

[rose@blob recordables] cdrecord −dev 0,0,0 −speed=8 cd.iso
Cdrecord 1.10 (i686−pc−linux−gnu) (C) 1995−2001 Joerg Schilling
scsidev: '0,0,0'
scsibus: 0 target: 0 lun: 0
Linux sg driver version: 3.1.20
Using libscg version 'schily−0.5'
Device type    : Removable CD−ROM
Version        : 0
Response Format: 1
Vendor_info    : 'HP      '
Identification : 'CD−Writer+ 8100 '
Revision       : '1.0g'
Device seems to be: Generic mmc CD−RW.
Using generic SCSI−3/mmc CD−R driver (mmc_cdr).
Driver flags   : SWABAUDIO
Starting to write CD/DVD at speed 4 in write mode for single session.
Last chance to quit, starting real write in 0 seconds. 
Operation starts.

Depending on your CD−writer, you now have the time to smoke a cigarette and/or get a cup of coffee. Upon
finishing the job, you will get a confirmation message:

Track 01: Total bytes read/written: 341540864/341540864 
          (166768 sectors).

There are some graphical tools available to make it easier on you. One of the popular ones is xcdroast, which
is freely available from the X−CD−Roast web site and is included on most systems and in the GNU directory.
Both the KDE and Gnome desktop managers have facilities to make your own CDs.
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Figure 9−2. X−CD−Roast

Read the man or Info pages describing these commands.

9.2.3. Backups on/from jazz drives, USB devices and such

These devices are usually mounted into the file system. After the mount procedure, they are accessed as
normal directories, so you can use the standard commands for manipulating files.

In the example below, images are copied from a USB camera to the hard disk:

robin:~> mount /mnt/camera

robin:~> mount | grep camera
/dev/sda1 on /mnt/camera type vfat (rw,nosuid,nodev)

robin:~> cp −R /mnt/camera/* images/

robin:~> umount /mnt/camera
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Likewise, a jazz drive may be mounted on /mnt/jazz.

Appropriate lines should be added in /etc/modules.conf and /etc/fstab to make this work. Refer
to specific hardware HOWTOs for more information.

9.2.4. Backing up data using a tape device

This is done using tar (see above). The mt tool is used for controlling the magnetic tape device, like
/dev/st0. Entire books have been written about tape backup, therefore, refer to our reading−list in
Appendix B for more information. Keep in mind that databases might need other backup procedures because
of their architecture.

The appropriate backup commands are usually put in one of the cron directories in order to have them
executed on a regular basis. In larger environments, the freely available Amanda backup suite or a commercial
solution may be implemented to back up multiple machines. Working with tapes, however, is a system
administration task beyond the scope of this document.

9.2.5. Tools from your distribution

Most Linux distributions offer their own tools for making your life easy. A short overview:

SuSE: YaST now includes expanded backup and restore modules.• 
RedHat: the File Roller tool provides visual management of (compressed) archives. They seem to be
in favour of the X−CD−Roast tool for moving backups to an external device.

• 

Mandrake: X−CD−Roast.• 
Most distributions come with the BSD dump and restore utilities for making backups of ext2 file
systems. This tool can write to a variety of devices and literally dumps the file(s) or file system bit per
bit onto the specified device. Like dd, this allows for backing up special file types such as the ones in
/dev.

• 

9.3. Summary

Here's a list of the commands involving file backup:

Table 9−1. Backup commands

Command Meaning

bzip2 A block−sorting file compressor.

cdrecord Record audio or data Compact Disks from a master.

dd Convert and copy a file

fdformat Low−level formats a floppy disk.

gzip Compress or expand files.

mcopy Copy MSDOS files to/from UNIX.

mdir Display an MSDOS directory.

mformat Add an MSDOS file system to a low−level formatted floppy disk.

mkbootdisk Creates a stand−alone boot floppy for the running system.
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mount
Mount a file system (integrate it with the current file system by connecting it to a mount
point).

tar Tape archiving utility, also used for making archives on disk instead of on tape.

umount Unmount file systems.

9.4. Exercises

Make a backup copy of your home directory in /var/tmp using the tar command. Then further
compress the file using gzip or bzip2. Make it a clean tarred file, one that doesn't make a mess when
unpacking.

• 

Format a floppy and put some files from your home directory on it. Switch floppies with another
trainee and recover his/her floppy in your home directory.

• 

DOS format the floppy. Use the mtools to put and delete files on it.• 
What happens to an unformatted floppy when you want to mount it into the file system?• 
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Chapter 10. Networking

When it comes to networking, Linux is your operating system of choice, not only because
networking is tightly integrated with the OS itself and a wide variety of free tools and
applications are available, but for the robustness under heavy loads that can only be achieved
after years of debugging and testing in an Open Source project.

Bookshelves full of information have been written about Linux and networking, but we will
try to give an overview in this chapter. After completing this, you will know more about

Supported networking protocols♦ 
File sharing and printing♦ 
Other common Internet/Intranet services♦ 
Remote execution of commands and applications♦ 
Basic network interconnection♦ 
Networking tools♦ 

10.1. Networking Overview

10.1.1. Networking protocols

Linux supports many different networking protocols. We list only the most important:

10.1.1.1. TCP/IP

The Transport Control Protocol and the Internet Protocol are the two most popular ways of communicating on
the Internet. A lot of applications, such as your browser and E−mail program, are built on top of this protocol
suite.

Very simply put, IP provides a solution for sending packets of information from one machine to another,
while TCP ensures that the packets are arranged in streams, so that packets from different applications don't
get mixed up, and that the packets are sent and received in the correct order.

The Internet was originally developed three decades ago for the United States Department of Defense (DoD),
mainly for the purpose of interconnecting different−brand computers. Another reason for the development of
TCP/IP was to provide a reliable data transport system over an unreliable network.

TCP/IP networking has been present in Linux since its beginnings. It has been implemented from scratch. It is
one of the most robust, fast and reliable implementations and is one of the key factors of the success of Linux.
Linux and networking are made for each other, in so much that not connecting your Linux system to the
network may result in slow startup and other troubles. Even if you don't use any network connections to other
computers, networking protocols are used for internal system and application communications. Linux expects
to be networked.

A good starting point for learning more about TCP and IP is in the following documents:

man 7 ip: Describes the IPv4 protocol implementation on Linux (version 4 currently being the most
wide−spread edition of the IP protocol).

• 
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man 7 tcp: Implementation of the TCP protocol.• 
RFC793, RFC1122, RFC2001 for TCP, and RFC791, RFC1122 and RFC1112 for IP.

The Request For Comments documents contain the descriptions of networking standards, protocols,
applications and implementation. These documents are managed by the Internet Engineering Task
Force, an international community concerned with the smooth operation of the Internet and the
evolution and development of the Internet architecture.

Your ISP usually has an RFC archive available, or you can browse the RFCs via
http://www.ietf.org/rfc.html.

• 

10.1.1.2. TCP/IPv6

Nobody expected the Internet to grow as fast as it does. IP proved to have quite some disadvantages when a
really large number of computers is in a network, the most important being the availability of unique
addresses to assign to each machine participating. Thus, IP version 6 was deviced to meet the needs of today's
Internet.

Unfortunately, not all applications and services support IPv6, yet. A migration is currently being set in motion
in many environments that can benefit from an upgrade to IPv6. For some applications, the old protocol is still
used, for applications that have been reworked the new version is already active. So when checking your
network configuration, sometimes it might be a bit confusing since all kinds of measures can be taken to hide
one protocol from the other so as the two don't mix up connections.

More information can be found in the following documents:

man 7 ipv6: the Linux IPv6 protocol implementation.• 
RFC1883 describing the IPv6 protocol.• 

10.1.1.3. PPP, SLIP, PLIP, PPPOE

The Linux kernel has built−in support for PPP (Point−to−Point−Protocol), SLIP (Serial Line IP) and PLIP
(Parallel Line IP). PPP is the most popular way individual users access their ISP (Internet Service Provider),
although in densely populated areas it is often being replaced by PPPOE, PPP over Ethernet, the protocol used
in cable modem connections.

Most Linux distributions provide easy−to−use tools for setting up an Internet connection. The only thing you
basically need is a username and password to connect to your Internet Service Provider (ISP), and a telephone
number in the case of PPP. These data are entered in the graphical configuration tool, which will likely also
allow for starting and stopping the connection to your provider.

10.1.1.4. ISDN

The Linux kernel has built−in ISDN capabilities. Isdn4linux controls ISDN PC cards and can emulate a
modem with the Hayes command set ("AT" commands). The possibilities range from simply using a terminal
program to full connection to the Internet.

Check your system documentation.
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10.1.1.5. AppleTalk

Appletalk is the name of Apple's internetworking stack. It allows a peer−to−peer network model which
provides basic functionality such as file and printer sharing. Each machine can simultaneously act as a client
and a server, and the software and hardware necessary are included with every Apple computer.

Linux provides full AppleTalk networking. Netatalk is a kernel−level implementation of the AppleTalk
Protocol Suite, originally for BSD−derived systems. It includes support for routing AppleTalk, serving UNIX
and AFS file systems using AppleShare and serving UNIX printers and accessing AppleTalk printers.

10.1.1.6. SMB/NMB

For compatibility with MS Windows environments, the Samba suite, including support for the NMB and
SMB protocols, can be installed on any UNIX−like system. The Server Message Block protocol (also called
Session Message Block, NetBIOS or LanManager protocol) is used on MS Windows 3.11, NT, 95/98, 2K and
XP to share disks and printers.

The basic functions of the Samba suite are: sharing Linux drives with Windows machines, accessing SMB
shares from Linux machines, sharing Linux printers with Windows machines and sharing Windows printers
with Linux machines.

Most Linux distributions provide a samba package, which does most of the server setup and starts up smbd,
the Samba server, and nmbd, the netbios name server, at boot time by default. Samba can be configured
graphically, via a web interface or via the command line and text configuration files. More information can be
found at the following locations:

man smb.conf: describes the format of the main Samba configuration file.• 
The Samba section of the RedHat Support Resources on Printing and File Services.• 
The Samba Project Documentation (or check your local samba.org mirror) contains an easy to read
installation and testing guide, which also explains how to configure your Samba server as a Primary
Domain Controller.

• 

The Samba website contains more documentation, including a troubleshooting guide.• 

10.1.1.7. Miscellaneous protocols

Linux also has support for Amateur Radio, WAN internetworking (X25, Frame Relay, ATM), InfraRed and
other wireless connections, but since these protocols usually require special hardware, we won't discuss them
in this document.

10.1.2. Network configuration and information

10.1.2.1. Configuration of local network interfaces

All the big, userfriendly Linux distributions come with various graphical tools, allowing for easy setup of the
computer in a local network or for connecting it to an Internet Service Provider. These tools can be started up
from the command line or from a menu:

RedHat Linux comes with redhat−config−network, which has both a graphical and a text mode
interface.

• 

Suse's YAST or YAST2 is an all−in−one configuration tool.• 
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Mandrake comes with a Network and Internet Configuration Wizard, which is preferably started up
from Mandrake's Control Center.

• 

Your system documentation provides plenty of advice and information about availability and use of tools.

Information you'll need to provide:

For connecting to the local network, for instance with your home computers, or at work: hostname,
domainname and IP address. If you want to set up your own network, best do some more reading first.
At work, this information is likely to be given to your computer automatically when you boot it up.
When in doubt, it is better not to specify any information than making it up.

• 

For connecting to the Internet: username and password for your ISP, telephone number when using a
modem. Your ISP usually automatically assigns you a hostname, IP address and all the other things
necessary for your Internet applications to work.

• 

10.1.2.2. Network configuration files

The graphical helper tools edit a specific set of network configuration files, using a couple of basic
commands. The exact names of the configuration files and their location in the file system is largely
dependent on your Linux distribution and version. However, a couple of network configuration files are
common on all UNIX systems:

/etc/hosts: always contains the localhost IP address, 127.0.0.1, which is used for interprocess
communication. Never remove this line! Sometimes contains addresses of additional hosts, which can
be contacted without using an external naming service such as DNS (the Domain Name Server).

A sample hosts file for a small home network:

# Do not remove the following line, or various programs
# that require network functionality will fail.
127.0.0.1       localhost.localdomain   localhost
192.168.52.10   tux.mylan.com           tux
192.168.52.11   winxp.mylan.com         winxp

Read more in man hosts.

• 

/etc/resolv.conf: configure access to a DNS server. This file contains your domain name and
the name server(s) to contact:
search mylan.com
nameserver 193.134.20.4

Read more in the resolv.conf man page.

• 

/etc/nsswitch.conf: defines the order in which to contact different name services. For Internet
use, it is important that dns shows up in the "hosts" line:
[bob@tux ~] grep hosts /etc/nsswitch.conf
hosts:  files dns

This instructs your computer to look up hostnames and IP addresses first in the /etc/hosts file,
and to contact the DNS server if a given host does not occur in the local hosts file. Other possible
name services to contact are LDAP, NIS and NIS+.

More in man nsswitch.conf.

• 
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10.1.2.3. Network configuration commands

The distribution−specific scripts and graphical tools use ip (or ifconfig and route on older systems) to
configure the kernel's networking configuration.

The ip command is used for assigning IP addresses to interfaces, for setting up routes to the Internet and to
other networks, for displaying TCP/IP configurations etcetera.

The following commands show IP address and routing information:

benny@home benny> ip addr show
1: lo: <LOOPBACK,UP> mtu 16436 qdisc noqueue 
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 brd 127.255.255.255 scope host lo
    inet6 ::1/128 scope host 
2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100
    link/ether 00:50:bf:7e:54:9a brd ff:ff:ff:ff:ff:ff
    inet 192.168.42.15/24 brd 192.168.42.255 scope global eth0
    inet6 fe80::250:bfff:fe7e:549a/10 scope link 

benny@home benny> ip route show
192.168.42.0/24 dev eth0  scope link 
127.0.0.0/8 dev lo  scope link 
default via 192.168.42.1 dev eth0 

On your laptop which you usually connect to the company network using the onboard Ethernet connection,
but which you are now to configure for dial−in at home or in a hotel, you might need to activate the PCMCIA
card. This is done using the cardctl control utility. However, a good distribution should provide PCMCIA
support in the network configuration tools, preventing users from having to execute PCMCIA commands
manually.

Further discussion of network configuration is out of the scope of this document. Your primary source for
extra information is the man pages for the services you want to set up. Additional reading:

The Modem−HOWTO: Help with selecting, connecting, configuring, trouble−shooting, and
understanding analog modems for a PC.

• 

LDP HOWTO Index, section 4.4: categorized list of HOWTOs about general networking, protocols,
dial−up, DNS, VPNs, bridging, routinfg, security and more.

• 

The /usr/share/doc/iproute−<version>ip−cref.ps file, viewable with for instance
gv.

• 

10.1.2.4. Network interface names

On a Linux machine, the device name lo or the local loop is linked with the internal 127.0.0.1 address. The
computer will have a hard time making your applications work if this device is not present; it is always there,
even on computers which are not networked.

The first ethernet device, eth0 in the case of a standard network interface card, points to your local LAN IP
address. Normal client machines only have one network interface card. Routers, connecting networks
together, have one network device for each network they serve.
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If you use a modem to connect to the Internet, your network device will probably be named ppp0. This is
normally also the case for connections using a cable modem.

10.1.2.5. Your host configuration

Apart from the ip command for displaying the network configuration, there's the common netstat command
which has a lot of options and is generally useful on any UNIX system. Use the −i option to display
information about network interfaces:

bob:~> netstat −i
Kernel Interface table
Iface MTU Met RXOK RXERR RX−DRP RX−OVR TX−OK TX−ERR TX−DRP TX−OVR Flg
eth0 1500   0 58459   0      0      0  63865     0      0      0 BMRU
lo  16436   0 24060   0      0      0  24060     0      0      0 LRU

Routing information can be displayed with the −nr option to the netstat command:

bob:~> netstat −nr
Kernel IP routing table
Destination  Gateway      Genmask       Flags MSS Window irtt Iface
192.168.42.0 0.0.0.0      255.255.255.0 U      40 0         0 eth0
127.0.0.0    0.0.0.0      255.0.0.0     U      40 0         0 lo
0.0.0.0      192.168.42.1 0.0.0.0       UG     40 0         0 eth0

This is a typical client machine in an IP network. It only has one network device, eth0. The lo interface is the
local loop.

10.1.2.6. Other hosts

An impressive amount of tools is focused on network management and remote administration of Linux
machines. Your local Linux software mirror will offer plenty of those. It would lead us too far to discuss them
in this document, so please refer to the program−specific documentation.

We will only discuss some common UNIX/Linux text tools in this section.

To display information on hosts or domains, use the host command:

[emmy@pc10 emmy]$ host www.eunet.be
www.eunet.be. has address 193.74.208.177

[emmy@pc10 emmy]$ host −t any eunet.be
eunet.be. SOA dns.eunet.be. hostmaster.Belgium.EU.net. 
  2002021300 28800 7200 604800 86400
eunet.be. mail is handled by 50 pophost.eunet.be.
eunet.be. name server ns.EU.net.
eunet.be. name server dns.eunet.be.

Similar information can be displayed using the dig command, which gives additional information about how
records are stored in the name server.

To check if a host is alive, use ping. If your system is configured to send more than one packet, interrupt ping
with the Ctrl+C key combination:
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[emmy@pc10 emmy]$ ping a.host.be 
PING a.host.be (1.2.8.3) from 80.20.84.26: 56(84) bytes of data.
64 bytes from a.host.be(1.2.8.3):icmp_seq=0 ttl=244 time=99.977msec
−−− a.host.be ping statistics −−−
1 packets transmitted, 1 packets received, 0% packet loss
round−trip min/avg/max/mdev = 99.977/99.977/99.977/0.000 ms

To check the route that packets follow to a network host, use the traceroute command:

[emmy@pc10 emmy]$ /usr/sbin/traceroute www.eunet.be
traceroute to www.eunet.be(193.74.208.177),30 hops max,38b packets
1 blob (10.0.0.1)  
       0.297ms  0.257ms  0.174ms
2 adsl−65.myprovider.be (217.136.111.1) 
       12.120ms 13.058ms 13.009ms
3 194.78.255.177 (194.78.255.177)  
       13.845ms 14.308ms 12.756ms
4 gigabitethernet2−2.intl2.gam.brussels.skynet.be (195.238.2.226)
       13.123ms 13.164ms 12.527ms
5 pecbru2.car.belbone.be (194.78.255.118) 
       16.336ms 13.889ms 13.028ms
6 ser−2−1−110−ias−be−vil−ar01.kpnbelgium.be (194.119.224.9)
       14.602ms 15.546ms 15.959ms
7 unknown−195−207−939.eunet.be (195.207.93.49) 
       16.514ms 17.661ms 18.889ms
8 S0−1−0.Leuven.Belgium.EU.net (195.207.129.1) 
       22.714ms 19.193ms 18.432ms
9 dukat.Belgium.EU.net (193.74.208.178) 22.758ms * 25.263ms

Specific domain name information can be queried using the whois command, as is explained by many whois
servers, like the one below:

[emmy@pc10 emmy]$ whois cnn.com
[whois.crsnic.net]

Whois Server Version 1.3

        $<−−snap server message−−>

   Domain Name: CNN.COM
   Registrar: NETWORK SOLUTIONS, INC.
   Whois Server: whois.networksolutions.com
   Referral URL: http://www.networksolutions.com
   Name Server: TWDNS−01.NS.AOL.COM
   Name Server: TWDNS−02.NS.AOL.COM
   Name Server: TWDNS−03.NS.AOL.COM
   Name Server: TWDNS−04.NS.AOL.COM
   Updated Date: 12−mar−2002
>>> Last update of whois database: Fri, 5 Apr 2002 05:04:55 EST <<<

The Registry database contains ONLY .COM, .NET, .ORG, .EDU domains
and Registrars.

[whois.networksolutions.com]

        $<−−snap server message−−>

Registrant:
Turner Broadcasting (CNN−DOM)
   1 CNN Center
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   Atlanta, GA 30303

   Domain Name: CNN.COM

   Administrative Contact:
        $<−−snap contactinfo−−>   
   Technical Contact:
        $<−−snap contactinfo−−>   
   Billing Contact:
        $<−−snap contactinfo−−>
   Record last updated on 12−Mar−2002.
   Record expires on 23−Sep−2009.
   Record created on 22−Sep−1993.
   Database last updated on 4−Apr−2002 20:10:00 EST.

   Domain servers in listed order:

   TWDNS−01.NS.AOL.COM          149.174.213.151
   TWDNS−02.NS.AOL.COM          152.163.239.216
   TWDNS−03.NS.AOL.COM          205.188.146.88
   TWDNS−04.NS.AOL.COM          64.12.147.120

For other domain names than .com, .net, .org and .edu, specify the whois server, such as this one for .be
domains:

whois domain.be@whois.dns.be

10.2. Internet/Intranet applications

The Linux system is a great platform for offering networking services. In this section, we will try to give an
overview of most common network servers and applications.

10.2.1. Server types

10.2.1.1. Standalone server

Offering a service to users can be approached in two ways. A daemon or service can run in standalone mode,
or it can be dependent on another service to be activated.

Network services that are heavily and/or continuously used, usually run in the standalone mode: they are
independent program daemons that are always running. They are most likely started up at system boot time,
and they wait for requests on the specific connection points or ports for which they are set up to listen. When a
request comes, it is processed, and the listening continues until the next request. A web server is a typical
example: you want it to be available 24 hours a day, and if it is too busy it should create more listening
instances to serve simultaneous users. Other examples are the large software archives such as Sourceforge or
your Tucows mirror, which must handle thousands of FTP requests per day.

An example of a standalone network service on your home computer might be the named, a caching name
server. Standalone services have there own processes running, you can check any time using ps:

bob:~> ps auxw | grep named
named   908  0.0  1.0 14876 5108 ?   S  Mar14  0:07 named −u named
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Most services on your home PC, such as the FTP service, don't have a running daemon, yet you can use them:

bob:~> ps auxw | grep ftp
bob     738   690  0 16:17 pts/6    00:00:00 grep ftp

bob:~> ncftp localhost
NcFTP 3.1.3 (Mar 27, 2002) by Mike Gleason (ncftp@ncftp.com).
Connecting to localhost(127.0.0.1)...
myhost.my.org FTP server (Version wu−2.6.2−8) ready.
Logging in...
Guest login ok, access restrictions apply.
Logged in to localhost.
ncftp / >

Let's see in the next section how this is arranged.

10.2.1.2. (x)inetd

On your home PC, things are usually a bit calmer. You may have a small network, for instance, and you may
have to transfer files from one PC to another from time to time, using FTP or Samba (for connectivity with
MS Windows machines). In those cases, starting all the services which you only need occasionally and having
them run all the time would be a waste of resources. So in smaller setups, you will find the necessary daemons
dependent on a central program, that listen on all the ports of the services for which it is responsible.

This super−server, the Internet services daemon, is started up at system initialization time. There are two
common implementations: inetd and xinetd (the extended Internet services daemon). One or the other is
usually running on every Linux system:

bob:~> ps −ef | grep inet
root  926   1 0 Mar14 ?   00:00:00 xinetd−ipv6 −stayalive −reuse \
−pidfile /var/run/xinetd.pid

The services for which the Internet daemon is responsible, are listed in its configuration file,
/etc/inetd.conf, for inetd, and in the directory /etc/xinetd.d for xinetd. Commonly managed
services include file share and print services, SSH, FTP, telnet, the Samba configuration daemon, talk and
time services.

As soon as a connection request is received, the central server will start an instance of the required server.
Thus, in the example below, when user bob starts an FTP session to the local host, an FTP daemon is running
as long as the session is active:

bob:~> ps auxw | grep ftp
bob     793  0.1  0.2  3960 1076 pts/6    S    16:44   0:00 ncftp localhost
ftp     794  0.7  0.5  5588 2608 ?        SN   16:44   0:00 ftpd: 
localhost.localdomain: anonymous/bob@his.server.com: IDLE

Of course, the same happens when you open connections to remote hosts: either a daemon answers directly, or
a remote (x)inetd starts the service you need and stops it when you quit.
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10.2.2. Mail

10.2.2.1. Servers

Sendmail is the standard mail server program or Mail Transport Agent for UNIX platforms. It is robust,
scalable, and when properly configured with appropriate hardware, handles thousands of users without
blinking. More information about how to configure Sendmail is included with the sendmail and sendmail−cf
packages, you may want to read the README and README.cf files in /usr/share/doc/sendmail.
The man sendmail and man aliases are also useful.

Qmail is another mail server, gaining popularity because it claims to be more secure than Sendmail. While
Sendmail is a monolithic program, Qmail consists of smaller interacting program parts that can be better
secured.

These servers handle mailing lists, filtering, virus scanning and much more. Free and commercial scanners are
available for use with Linux. Examples of mailing list software are Mailman, Listserv, Majordomo and
EZmlm. See the web page of your favorite virus scanner for information on Linux client and server support.

10.2.2.2. Remote mail servers

The most popular protocols to access mail remotely are POP3 and IMAP4. IMAP and POP both allow offline
operation, remote access to new mail and they both rely on an SMTP server to send mail.

While POP is a simple protocol, easy to implement and supported by almost any mail client, IMAP is to be
preferred because:

It can manipulate persistent message status flags.• 
It can store as well as fetch mail messages.• 
It can access and manage multiple mailboxes.• 
It supports concurrent updates and shared mailboxes.• 
It is also suitable for accessing Usenet messages and other documents.• 
IMAP works both on−line and off−line.• 
it is optimized for on−line performance, especially over low−speed links.• 

10.2.2.3. Mail user−agents

There are plenty of both text and graphical E−mail clients, we'll just name a few of the common ones. Pick
your favorite.

The UNIX mail command has been around for years, even before networking existed. It is a simple interface
to send messages and small files to other users, who can then save the message, redirect it, reply to it and
such.

While it is not commonly used as a client anymore, the mail program is still useful, for example to mail the
output of a command to somebody:

mail <future.employer@whereIwant2work.com> < cv.txt

The elm mail reader is a much needed improvement to mail, and so is pine (Pine Is Not ELM). The mutt
mail reader is even more recent and offers features like threading.
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For those users who prefer a graphical interface to their mail (and a tennis elbow or a mouse arm), there are
hundreds of options. The most popular for new users are Mozilla Mail and the Ximian MS Exchange clone,
Evolution, of which you can see a screenshot below:

Figure 10−1. Evolution mail and news reader

There are also tens of web mail applications available.

An overview is available via the Linux Mail User HOWTO.

Most Linux distributions include fetchmail, a mail−retrieval and forwarding utility. It fetches mail from
remote mail servers (POP, IMAP and some others) and forwards it to your local delivery system. You can
then handle the retrieved mail using normal mail clients. It can be run in daemon mode to repeatedly poll one
or more systems at a specified interval. Information and usage examples can be found in the Info pages; the
directory /usr/share/doc/fetchmail−<version> contains a full list of features and a FAQ for
beginners.

The procmail filter can be used for filtering incoming mail, to create mailing lists, to pre−process mail, to
selectively forward mail and more. The accompanying formail program, among others, enables generation of
auto−replies and splitting up mailboxes. Procmail has been around for years on UNIX and Linux machines
and is a very robust system, designed to work even in the worst circumstances. More information may be
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found in the /usr/share/doc/procmail−<version> directory and in the man pages.

10.2.3. Web

10.2.3.1. The Apache Web Server

Apache is by far the most popular web server, used on more than half of all Internet web servers. Most Linux
distributions include Apache. Apache's advantages include its modular design, SSL support, stability and
speed. Given the appropriate hardware and configuration it can support the highest loads.

On Linux systems, the server configuration is usually done in the /etc/httpd directory. The most
important configuration file is httpd.conf; it is rather self−explanatory. Should you need help, you can
find it in the httpd man page or on the Apache website.

10.2.3.2. Web browsers

A number of web browsers, both free and commercial, exist for the Linux platform. Netscape Navigator has
long been the only decent option, but with Mozilla a competitive alternative is available.

Amaya is the W3C browser. Opera is a commercial browser, compact and fast. Many desktop managers offer
web browsing features in their file manager, like nautilus.

Among the popular text based browsers are lynx and links. You may need to define proxy servers in your
shell, by setting the appropriate variables. Text browsers are fast and handy when no graphical environment is
available, such as when used in scripts.

10.2.4. File Transfer Protocol

10.2.4.1. FTP servers

On a Linux system, an FTP server is typically run from xinetd, using the WU−ftpd server, although the FTP
server may be configured as a stand−alone server on systems with heavy FTP traffic. See the exercises.

Other FTP servers include among others Ncftpd and Proftpd.

Most Linux distributions contain the anonftp package, which sets up an anonymous FTP server tree and
accompanying configuration files.

10.2.4.2. FTP clients

Most Linux distributions include ncftp, an improved version of the common UNIX ftp command, which you
may also know from the Windows command line. The ncftp program offers extra features such as a nicer and
more comprehensible user interface, file name completion, append and resume functions, bookmarking,
session management and more:

thomas:~> ncftp blob
NcFTP 3.0.3 (April 15, 2001) by Mike Gleason (ncftp@ncftp.com).
Connecting to blob...
blob.some.net FTP server (Version wu−2.6.1−20) ready.
Logging in...
Guest login ok, access restrictions apply.
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Logged in to blob.
ncftp / > help
Commands may be abbreviated.  'help showall' shows hidden and 
unsupported commands.  
'help <command>' gives a brief description of <command>.

ascii      cat      help      lpage     open     quote    site     
bgget      cd       jobs      lpwd      page     rename   type     
bgput      chmod    lcd       lrename   pdir     rhelp    umask    
bgstart    close    lchmod    lrm       pls      rm       version  
binary     debug    lls       lrmdir    put      rmdir      
bookmark   dir      lmkdir    ls        pwd      set        
bookmarks  get      lookup    mkdir     quit     show       
ncftp / >

Excellent help with lot of examples can be found in the man pages. And again, a number of GUI applications
are available.

FTP is insecure!

Don't use the File Transfer Protocol for non−anonymous login unless you know what you are doing.
Your user name and password might be captured by malevolent fellow network users! Use secure FTP
instead; the sftp program comes with the Secure SHell suite, see Section 10.3.4.

10.2.5. Chatting and conferencing

Various clients and systems are available in each distribution. A short and incomplete list of the most popular
programs:

gaim: multi−protocol instant messaging client for Linux, Windows and Mac, compatible with MSN
Messenger, ICQ, IRC and much more; see the Info pages or the Gaim site for more.

• 

xchat: IRC client for the X window system:

Figure 10−2. X−Chat

• 
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The home page is at SourceForge.
JMSN: Java MSN Messenger clone with many features that the original does not have.• 
Konversation, KVIrc and many other K−tools from the KDE suite.• 
gnomemeeting: videoconferencing program for UNIX.• 

10.2.6. News services

Running a Usenet server involves a lot of expertise and fine−tuning, so refer to the INN homepage for more
information.

There are a couple of interesting newsgroups in the comp.* hierarchy, which can be accessed using a variety
of text and graphical clients. A lot of mail clients support newsgroup browsing as well, check your program or
see your local Open Source software mirror for text clients such as tin, slrnn and mutt, or download Mozilla
or one of a number of other graphical clients.

Deja.com keeps a searchable archive of all newsgroups, powered by Google. This is a very powerful
instrument for getting help: chances are very high that somebody has encountered your problem, found a
solution and posted it in one of the newsgroups.

10.2.7. The Domain Name System

All these applications need DNS services to match IP addresses to host names and vice versa. A DNS server
does not know all the IP addresses in the world, but networks with other DNS servers which it can query to
find an unknown address. Most UNIX systems can run named, which is part of the bind (Berkeley Internet
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Name Domain) package distributed by the Internet Software Consortium. It can run as a stand−alone caching
nameserver, which is often done on Linux systems in order to speed up network access.

Your main client configuration file is /etc/resolv.conf, which determines the order in which Domain
Name Servers are contacted:

search somewhere.org
nameserver 192.168.42.1
nameserver 193.74.208.137

More information can be found in the Info pages on named, in the
/usr/share/doc/bind−<version> files and on the Bind project homepage. The DNS HOWTO
covers the use of BIND as a DNS server.

10.2.8. DHCP

DHCP is the Dynamic Host Configuration Protocol, which is gradually replacing good old bootp in larger
environments. It is used to control vital networking parameters such as IP addresses and name servers of
hosts. DHCP is backward compatible with bootp. For configuring the server, you will need to read the
HOWTO.

DHCP client machines will usually be configured using a GUI that configures the dhcpcd, the DHCP client
daemon. Check your system documentation if you need to configure your machine as a DHCP client.

10.2.9. Authentication services

10.2.9.1. Traditional

Traditionally, users are authenticated locally, using the information stored in /etc/passwd and
/etc/shadow on each system. But even when using a network service for authenticating, the local files will
always be present to configure system accounts for administrative use, such as the root account, the daemon
accounts and often accounts for additional programs and purposes.

These files are often the first candidates for being examined by hackers, so make sure the permissions and
ownerships are strictly set as should be:

bob:~> ls −l /etc/passwd /etc/shadow
−rw−r−−r−−    1 root     root         1803 Mar 10 13:08 /etc/passwd
−r−−−−−−−−    1 root     root         1116 Mar 10 13:08 /etc/shadow

10.2.9.2. PAM

Linux can use PAM, the Pluggable Authentication Module, a flexible method of UNIX authentication.
Advantages of PAM:

A common authentication scheme that can be used with a wide variety of applications.• 
PAM can be implemented with various applications without having to recompile the applications to
specifically support PAM.

• 

Great flexibility and control over authentication for the administrator and application developer.• 
Application developers do not need to develop their program to use a particular authentication• 
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scheme. Instead, they can focus purely on the details of their program.

The directory /etc/pam.d contains the PAM configuration files (used to be /etc/pam.conf). Each
application or service has its own file. Each line in the file has four elements:

Module:

auth: provides the actual authentication (perhaps asking for and checking a password) and
sets credentials, such as group membership or Kerberos tickets.

♦ 

account: checks to make sure that access is allowed for the user (the account has not
expired, the user is allowed to log in at this time of day, and so on).

♦ 

password: used to set passwords.♦ 
session: used after a user has been authenticated. This module performs additional tasks
which are needed to allow access (for example, mounting the user's home directory or making
their mailbox available).

♦ 

The order in which modules are stacked, so that multiple modules can be used, is very important.

• 

Control Flags: tell PAM which actions to take upon failure or success. Values can be required,
requisite, sufficient or optional.

• 

Module Path: path to the pluggable module to be used, usually in /lib/security.• 
Arguments: information for the modules• 

Shadow password files are automatically detected by PAM.

More information can be found in the pam man pages or at the Linux−PAM project homepage.

10.2.9.3. LDAP

The Lightweight Directory Access Protocol is a client−server system for accessing global or local directory
services over a network. On Linux, the OpenLDAP implementation is used. It includes slapd, a stand−alone
server; slurpd, a stand−alone LDAP replication server; libraries implementing the LDAP protocol and a
series of utilities, tools and sample clients.

The main benefit of using LDAP is the consolidation of certain types of information within your organization.
For example, all of the different lists of users within your organization can be merged into one LDAP
directory. This directory can be queried by any LDAP−enabled applications that need this information. It can
also be accessed by users who need directory information.

Other LDAP or X.500 Lite benefits include its ease of implementation (compared to X.500) and its
well−defined Application Programming Interface (API), which means that the number of LDAP−enabled
applications and LDAP gateways should increase in the future.

On the negative side, if you want to use LDAP, you will need LDAP−enabled applications or the ability to use
LDAP gateways. While LDAP usage should only increase, currently there are not very many LDAP−enabled
applications available for Linux. Also, while LDAP does support some access control, it does not possess as
many security features as X.500.

Since LDAP is an open and configurable protocol, it can be used to store almost any type of information
relating to a particular organizational structure. Common examples are mail address lookups, central
authentication in combination with PAM, telephone directories and machine configuration databases.
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See your system specific information and the man pages for related commands such as ldapmodify and
ldapsearch for details. More information can be found in the LDAP Linux HOWTO, which discusses
installation, configuration, running and maintenance of an LDAP server on Linux. The LDAP Implementation
HOWTO describes the technical aspects of storing application data in an LDAP server. The author of this
Introduction to Linux document also wrote an LDAP Operations HOWTO, describing the basics everyone
should know about when dealing with LDAP management, operations and integration of services.

10.3. Remote execution of applications

10.3.1. Introduction

There are a couple of different ways to execute commands or run programs on a remote machine and have the
output, be it text or graphics, sent to your workstation. The connections can be secure or insecure. While it is
of course advised to use secure connections instead of transporting your password over the network
unencrypted, we will discuss some practical applications of the older (unsafe) mechanisms, as they are still
useful in a modern networked environment, such as for troubleshooting or running exotic programs.

10.3.2. Rsh, rlogin and telnet

The rlogin and rsh commands for remote login and remote execution of commands are inherited from UNIX.
While seldom used because they are blatantly insecure, they still come with almost every Linux distribution
for backward compatibility with UNIX programs.

Telnet, on the other hand, is still commonly used, often by system and network administrators. Telnet is one
of the most powerful tools for remote access to files and remote administration, allowing connections from
anywhere on the Internet. Combined with an X server, remote graphical applications can be displayed locally.
There is no difference between working on the local machine and using the remote machine.

Because the entire connection is unencrypted, allowing telnet connections involves taking high security risks.
For normal remote execution of programs, Secure SHell or ssh is advised. We will discuss the secure method
later in this section.

However, telnet is still used in many cases. Below are some examples in which a mail server and a web server
are tested for replies:

Checking that a mail server works:

[jimmy@blob ~] telnet mailserver 25
Trying 192.168.42.1...
Connected to mailserver.
Escape character is '^]'.
220 m1.some.net ESMTP Sendmail 8.11.6/8.11.6; 200302281626
ehlo some.net
250−m1.some.net Hello blob.some.net [10.0.0.1], pleased to meet you
250−ENHANCEDSTATUSCODES
250−8BITMIME
250−SIZE
250−DSN
250−ONEX
250−ETRN
250−XUSR
250 HELP
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mail from: jimmy@some.net
250 2.1.0 jimmy@some.net... Sender ok
rcpt to: davy@some.net
250 2.1.5 davy@some.net... Recipient ok
data
354 Enter mail, end with "." on a line by itself
test
.
250 2.0.0 g2MA1R619237 Message accepted for delivery
quit
221 2.0.0 m1.some.net closing connection
Connection closed by foreign host.

Checking that a web server answers to basic requests:

[jimmy@blob ~] telnet www.some.net 80
Trying 64.39.151.23...
Connected to www.some.net.
Escape character is '^]'.
HEAD / ;HTTP/1.1

HTTP/1.1 200 OK
Date: Fri, 22 Mar 2002 10:05:14 GMT
Server: Apache/1.3.22 (UNIX) (Red−Hat/Linux) 
 mod_ssl/2.8.5 OpenSSL/0.9.6
 DAV/1.0.2 PHP/4.0.6 mod_perl/1.24_01
Last−Modified: Fri, 04 Jan 2002 08:21:00 GMT
ETag: "70061−68−3c3565ec"
Accept−Ranges: bytes
Content−Length: 104
Connection: close
Content−Type: text/html

Connection closed by foreign host.

[jimmy@blob ~]

This is perfectly safe, because you never have to give a username and/or password for getting the data you
want, so nobody can snoop that important information off the cable.

10.3.3. The X Window System

10.3.3.1. X features

As we already explained in Chapter 7 (see Section 7.3.3), the X Window system comes with an X server
which serves graphics to clients that need a display.

It is important to realize the distinction between the X server and the X client application(s). The X server
controls the display directly and is responsible for all input and output via keyboard, mouse and display. The
X client, on the other hand, does not access the input and output devices directly. It communicates with the X
server which handles input and output. It is the X client which does the real work, like computing values,
running applications and so forth. The X server only opens windows to handle input and output for the
specified client.

In normal operation (runlevel five, graphical mode), every Linux workstation is an X server to itself, even if it
only runs client applications. All the applications you are running (for example, Gimp, a terminal window,
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your browser, your office application, your CD playing tool, and so on) are clients to your X server. Server
and client are running on the same machine in this case.

This client/server nature of the X system makes it an ideal environment for remote execution of applications
and programs. Because the process is actually being executed on the remote machine, very little CPU power is
needed on the local host. Such machines, purely acting as servers for X, are called X terminals and were once
very popular. More information may be found in the Remote X applications mini−HOWTO.

10.3.3.2. Telnet and X

If you would want to use telnet to display graphical applications running on a remote machine, you first need
to give the remote machine access to your display (to your X server!) using the xhost command, by typing a
command similar to the one below in a terminal window on your local machine:

davy:~> xhost +remote.machine.com

After that, connect to the remote host and tell it to display graphics on the local machine by setting the
environment variable DISPLAY:

[davy@remote ~] export DISPLAY="local.host.com:0.0"

After completing this step, any application started in this terminal window will be displayed on your local
desktop, using remote resources for computing, but your local graphical resources (your X server) for
displaying the application.

This procedure assumes that you have some sort of X server (XFree86, Exceed, Cygwin) already set up on the
machine where you want to display images. The architecture and operating system of the client machine are
not important as long as they allow you to run an X server on it.

Mind that displaying a terminal window from the remote machine is also considered to be a display of an
image.

10.3.4. The SSH suite

10.3.4.1. Introduction

Most UNIX and Linux systems now run Secure SHell in order to leave out the security risks that came with
telnet. Most Linux systems will run a version of OpenSSH, an Open Source implementation of the SSH
protocol, providing secure encrypted communications between untrusted hosts over an untrusted network. In
the standard setup X connections are automatically forwarded, but arbitrary TCP/IP ports may also be
forwarded using a secure channel.

The ssh client connects and logs into the specified host name. The user must provide his identity to the remote
machine as specified in the sshd_config file, which can usually be found in /etc/ssh. The
configuration file is rather self−explanatory and by defaults enables most common features. Should you need
help, you can find it in the sshd man pages.

When the user's identity has been accepted by the server, the server either executes the given command, or
logs into the machine and gives the user a normal shell on the remote machine. All communication with the
remote command or shell will be automatically encrypted.
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The session terminates when the command or shell on the remote machine exits and all X11 and TCP/IP
connections have been closed.

When connecting to a host for the first time, using any of the programs that are included in the SSH
collection, you need to establish the authenticity of that host and acknowledge that you want to connect:

lenny ~> ssh blob
The authenticity of host 'blob (10.0.0.1)' can't be established.
RSA fingerprint is 18:30:50:46:ac:98:3c:93:1a:56:35:09:8d:97:e3:1d.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'blob,192.168.30.2' (RSA) to the list of 
known hosts.
Last login: Sat Dec 28 13:29:19 2002 from octarine
This space for rent.

lenny is in ~

It is important that you type "yes", in three characters, not just "y". This edits your ~/.ssh/known_hosts
file, see Section 10.3.4.3.

If you just want to check something on a remote machine and then get your prompt back on the local host, you
can give the commands that you want to execute remotely as arguments to ssh:

lenny ~> ssh blob who
jenny@blob's password:
root     tty2         Jul 24 07:19
lena     tty3         Jul 23 22:24
lena     0:           Jul 25 22:03

lenny ~> uname −n
magrat.example.com

10.3.4.2. X11 and TCP forwarding

If the X11Forwarding entry is set to yes and the user is using X applications, the DISPLAY environment
variable is set, the connection to the X11 display is automatically forwarded to the remote side in such a way
that any X11 programs started from the shell will go through the encrypted channel, and the connection to the
real X server will be made from the local machine. The user should not manually set DISPLAY. Forwarding
of X11 connections can be configured on the command line or in the sshd configuration file.

The value for DISPLAY set by ssh will point to the server machine, but with a display number greater than
zero. This is normal, and happens because ssh creates a proxy X server on the server machine (that runs the X
client application) for forwarding the connections over the encrypted channel.

This is all done automatically, so when you type in the name of a graphical application, it is displayed on your
local machine and not on the remote host. We use xclock in the example, since it is a small program which is
generally installed and ideal for testing:

Figure 10−3. SSH X11 forwarding
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SSH will also automatically set up Xauthority data on the server machine. For this purpose, it will generate a
random authorization cookie, store it in Xauthority on the server, and verify that any forwarded
connections carry this cookie and replace it by the real cookie when the connection is opened. The real
authentication cookie is never sent to the server machine (and no cookies are sent in the plain).

Forwarding of arbitrary TCP/IP connections over the secure channel can be specified either on the command
line or in a configuration file.

The X server

This procedure assumes that you have a running X server on the client where you want to display the
application from the remote host. The client may be of different architecture and operating system than
the remote host, as long as it can run an X server, such as Cygwin (which implements an XFree86 server
for MS Windows clients and others) or Exceed, it should be possible to set up a remote connection with
any Linux or UNIX machine.

10.3.4.3. Server authentication

The ssh client/server system automatically maintains and checks a database containing identifications for all
hosts it has ever been used with. Host keys are stored in $HOME/.ssh/known_hosts in the user's home
directory. Additionally, the file /etc/ssh/ssh_known_hosts is automatically checked for known hosts.
Any new hosts are automatically added to the user's file. If a host's identification ever changes, ssh warns
about this and disables password authentication to prevent a Trojan horse from getting the user's password.
Another purpose of this mechanism is to prevent man−in−the−middle attacks which could otherwise be used
to circumvent the encryption. In environments where high security is needed, sshd can even be configured to
prevent logins to machines whose host keys have changed or are unknown.
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10.3.4.4. Secure remote copying

The SSH suite provides scp as a secure alternative to the rcp command that used to be popular when only rsh
existed. scp uses ssh for data transfer, uses the same authentication and provides the same security as ssh.
Unlike rcp, scp will ask for passwords or passphrases if they are needed for authentication:

lenny /var/tmp> scp Schedule.sdc.gz blob:/var/tmp/
lenny@blob's password:
Schedule.sdc.gz  100% |*****************************| 100 KB 00:00

lenny /var/tmp>

Any file name may contain a host and user specification to indicate that the file is to be copied to/from that
host. Copies between two remote hosts are permitted. See the Info pages for more information.

If you would rather use an FTP−like interface, use sftp:

lenny /var/tmp> sftp blob
Connecting to blob...
lenny@blob's password:

sftp> cd /var/tmp

sftp> get Sch*
Fetching /var/tmp/Schedule.sdc.gz to Schedule.sdc.gz

sftp> bye

lenny /var/tmp>

10.3.4.5. Authentication keys

The ssh−keygen command generates, manages and converts authentication keys for ssh. It can create RSA
keys for use by SSH protocol version 1 and RSA or DSA keys for use by SSH protocol version 2.

Normally each user wishing to use SSH with RSA or DSA authentication runs this once to create the
authentication key in $HOME/.ssh/identity, id_dsa or id_rsa. Additionally, the system
administrator may use this to generate host keys for the system.

Normally this program generates the key and asks for a file in which to store the private key. The public key is
stored in a file with the same name but .pub appended. The program also asks for a passphrase. The
passphrase may be empty to indicate no passphrase (host keys must have an empty passphrase), or it may be a
string of arbitrary length.

There is no way to recover a lost passphrase. If the passphrase is lost or forgotten, a new key must be
generated and copied to the corresponding public keys.

We will study SSH keys in the exercises. All information can be found in the man or Info pages.
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10.3.5. VNC

VNC or Virtual Network Computing is in fact a remote display system which allows viewing a desktop
environment not only on the local machine on which it is running, but from anywhere on the Internet and from
a wide variety of machines and architectures, including MS Windows and several UNIX distributions. You
could, for example, run MS Word on a Windows NT machine and display the output on your Linux desktop.
VNC provides servers as well as clients, so the opposite also works and it may thus be used to display Linux
programs on Windows clients. VNC is probably the easiest way to have X connections on a PC. The
following features make VNC different from a normal X server or commercial implementations:

No state is stored at the viewer side: you can leave your desk and resume from another machine,
continuing where you left. When you are running a PC X server, and the PC crashes or is restarted, all
remote applications that you were running will die. With VNC, they keep on running.

• 

It is small and simple, no installation needed, can be run from a floppy if needed.• 
Platform independent with the Java client, runs on virtually everything that supports X.• 
Sharable: one desktop may be displayed on multiple viewers.• 
Free (GNU Public License).• 

More information can be found in the VNC client man pages (man vncviewer) or on the VNC website.

10.4. Security

10.4.1. Introduction

As soon as a computer is connected to the network, all kinds of abuse becomes possible, be it a UNIX−based
or any other system. Admittedly, mountains of papers have been spilled on this subject and it would lead us
too far to discuss the subject of security in detail. There are, however, a couple of fairly logical things even a
novice user can do to obtain a very secure system, because most break−ins are the result of ignorant or
careless users.

Maybe you are asking yourself if this all applies to you, using your computer at home or working at your
office on a desktop in a fairly protected environment. The questions you should be asking yourself, however,
are more on the lines of:

Do you want to be in control of your own system?• 
Do you want to (unwittingly) participate in criminal activities?• 
Do you want your equipment to be used by someone else?• 
Do you want to take risks on losing your Internet connection?• 
Do you want to rebuild your system every time it has been hacked?• 
Do you want to risk personal or other data loss?• 

Presuming you don't, we will quickly list the steps you can take to secure your machine. Extended information
can be found in the Linux Security HOWTO.

10.4.2. Services

The goal is to run as few services as possible. If the number of ports that are open for the outside world are
kept to a minimum, this is all the better to keep an overview. If services can't be turned off for the local
network, try to at least disable them for outside connections.
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A rule of thumb is that if you don't recognize a particular service, you probably won't need it anyway. Also
keep in mind that some services are not really meant to be used over the Internet. Don't rely on what should be
running, check which services are listening on what TCP ports using the netstat command:

[elly@mars ~] netstat −l | grep tcp
tcp     0      0 *:32769                 *:*      LISTEN
tcp     0      0 *:32771                 *:*      LISTEN
tcp     0      0 *:printer               *:*      LISTEN
tcp     0      0 *:kerberos_master       *:*      LISTEN
tcp     0      0 *:sunrpc                *:*      LISTEN
tcp     0      0 *:6001                  *:*      LISTEN
tcp     0      0 *:785                   *:*      LISTEN
tcp     0      0 localhost.localdom:smtp *:*      LISTEN
tcp     0      0 *:ftp                   *:*      LISTEN
tcp     0      0 *:ssh                   *:*      LISTEN
tcp     0      0 ::1:x11−ssh−offset      *:*      LISTEN

Things to avoid:

exec, rlogin and rsh, and telnet just to be on the safe side.• 
X11 on server machines.• 
No lp if no printer is physically attached.• 
No MS Windows hosts in the network, no Samba required.• 
Don't allow FTP unless an FTP server is required.• 
Don't allow NFS and NIS over the Internet, disable all related services on a stand−alone installation.• 
Don't run an MTA if you're not actually on a mail server.• 
...• 

Stop running services using the chkconfig command, the initscripts or by editing the (x)inetd configuration
files.

10.4.3. Update regularly

Its ability to adapt quickly in an ever changing environment is what makes Linux thrive. But it also creates a
possibility that security updates have been released even while you are installing a brand new version, so the
first thing you should do (and this goes for about any OS you can think of) after installing is getting the
updates as soon as possible. After that, update all the packages you use regularly.

Some updates may require new configuration files, and old files may be replaced. Check the documentation,
and ensure that everything runs normal after updating.

Most Linux distributions provide mailing list services for security update announcements, and tools for
applying updates to the system. General Linux only security issues are reported among others at
Linuxsecurity.com.

Updating is an ongoing process, so it should be an almost daily habit.

10.4.4. Firewalls and access policies
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10.4.4.1. What is a firewall?

In the previous section we already mentioned firewall capabilities in Linux. While firewall administration is
one of the tasks of your network admin, you should know a couple of things about firewalls.

Firewall is a vague term that can mean anything that acts as a protective barrier between us and the outside
world, generally the Internet. A firewall can be a dedicated system or a specific application that provides this
functionality. Or it can be a combination of components, including various combinations of hardware and
software. Firewalls are built from "rules" that are used to define what is allowed to enter and/or exit a given
system or network.

After disabling unnecessary services, we now want to restrict accepted services as to allow only the minimum
required connections. A fine example is working from home: only the specific connection between your office
and your home should be allowed, connections from other machines on the Internet should be blocked.

10.4.4.2. Packet filters

The first line of defense is a packet filter, which can look inside IP packages and make decisions based on the
content. Systems running the ipchains firewall are based on 2.2 kernels. Newer systems (2.4 kernel) use
iptables, a next generation packet filter for Linux, and the Gnome Lokkit tool. This tool was only created to
provide an easy interface for normal users. It sets up a basic firewall configuration for a desktop, a dial−up or
cable modem connection, and that's about it. It should not be used in larger environments.

One of the most noteworthy enhancements in the newer kernels is the stateful inspection feature, which not
only tells what is inside a packet, but also detects if a packet belongs or is related to a new or existing
connection.

Development is ongoing, so it is best to check with each new version of a distribution which system is being
used.

More information can be found at the netfilter/iptables project page.

10.4.4.3. TCP wrappers

TCP wrapping provides much the same results as the packet filters, but works differently. The wrapper
actually accepts the connection attempt, then examines configuration files and decides whether to accept or
reject the connection request. It controls connections at the application level rather than at the network level.

TCP wrappers are typically used with xinetd to provide host name and IP−address−based access control. In
addition, these tools include logging and utilization management capabilities that are easy to configure.

The advantages of TCP wrappers are that the connecting client is unaware that wrappers are used, and that
they operate separately from the applications they protect.

The host based access is controlled in the hosts.allow and hosts.deny files. More information can be
found in the TCP wrapper documentation files in /usr/share/doc/tcp_wrappers−<version>/
and in the man pages for the host based access control files, which contain examples.
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10.4.4.4. Proxies

Proxies can perform various duties, not all of which have much to do with security. But the fact that they are
an intermediary make proxies a good place to enforce access control policies, limit direct connections through
a firewall, and control how the network behind the proxy looks to the Internet.

Usually in combination with a packet filter, but sometimes all by themselves, proxies provide an extra level of
control. More information can be found in the Firewall HOWTO or on the Squid website.

10.4.4.5. Access to individual applications

Some servers may have their own access control features. Common examples include Samba, X11, Bind,
Apache and CUPS. For every service you want to offer check which configuration files apply.

10.4.4.6. Log files

If anything, the UNIX way of logging all kinds of activities into all kinds of files confirms that "it is doing
something." Of course, log files should be checked regularly, manually or automatically. Firewalls and other
means of access control tend to create huge amounts of log files, so the trick is to try and only log abnormal
activities.

10.4.5. Intrusion detection

Intrusion Detection Systems are designed to catch what might have gotten past the firewall. They can either be
designed to catch an active break−in attempt in progress, or to detect a successful break−in after the fact. In
the latter case, it is too late to prevent any damage, but at least we have early awareness of a problem. There
are two basic types of IDS: those protecting networks, and those protecting individual hosts.

For host based IDS, this is done with utilities that monitor the file system for changes. System files that have
changed in some way, but should not change, are a dead give−away that something is amiss. Anyone who gets
in and gets root access will presumably make changes to the system somewhere. This is usually the very first
thing done, either so he can get back in through a backdoor, or to launch an attack against someone else, in
which case, he has to change or add files to the system. Some systems come with the tripwire monitoring
system, which is documented at the Tripwire Open Source Project website.

Network intrusion detection is handled by a system that sees all the traffic that passes the firewall (not by
portscanners, which advertise usable ports). Snort is an Open Source example of such a program.
Whitehats.com features an open Intrusion detection database, arachNIDS.

10.4.6. More tips

Some general things you should keep in mind:

Do not allow root logins. UNIX developers came up with the su over two decades ago for extra
security.

• 

Take passwords seriously. Use shadow passwords. Change your passwords regularly.• 
Try to always use SSH. Avoid telnet, FTP clients, and other client programs, such as a POP3 mail
client, which send unencrypted passwords over the network.

• 

Limit resources using quota and/or ulimit.• 
The mail for root should be delivered to, or at least read by, an actual person.• 
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The SANS institute has more tips and tricks, sorted per distribution, with mailing list service. They
advertise the use of the Bastille hardening system for RedHat users.

• 

Check the origin of new software, get it from a trusted place/site. Verify new packages before
installing.

• 

When using a non−permanent Internet connection, shut it down as soon as you don't need it anymore.• 
Run private services on odd ports instead of the ones expected by possible hackers.• 
Know your system. After a while, you can almost feel when something is happening.• 

10.4.7. Have I been hacked?

How can you tell? This is a checklist of suspicious events:

Mysterious open ports, strange processes.• 
System utilities (common commands) behaving strange.• 
Login problems.• 
Unexplained bandwidth usage.• 
Damaged or missing log files, syslog daemon behaving strange.• 
Interfaces in unusual modes.• 
Unexpectedly modified configuration files.• 
Strange entries in shell history files.• 
Unidentified temporary files.• 

10.4.8. Recovering from intrusion

In short, stay calm. Then take the following actions in this order:

Disconnect the machine from the network.• 
Try to find out as much as you can about how your security was breached.• 
Backup important non−system data.• 
Re−install the system.• 
Use new passwords.• 
Restore from system and data backups.• 
Apply all available updates.• 
Re−examine the system: block off unnecessary services, check firewall rules and other access
policies.

• 

Reconnect.• 

10.5. Summary

Linux and networking go hand in hand. The Linux kernel has support for all common and most uncommon
network protocols. The standard UNIX networking tools are provided in each distribution. Next to those, most
distributions offer tools for easy network installation and management.

Linux is well known as a stable platform for running various Internet services, the amount of Internet software
is endless. Like UNIX, Linux can be just as well used and administered from a remote location, using one of
several solutions for remote execution of programs.

We briefly touched the subject of security. Linux is an ideal firewall system, light and cheap, but can be used
in several other network functions such as routers and proxy servers.
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Increasing network security is mainly done by applying frequent updates and common sense.

10.6. Exercises

10.6.1. General networking

Display network information for your workstation: IP address, routes, name servers.• 
Suppose no DNS is available. What would you do to reach your neighbour's machine without typing
the IP address all the time?

• 

How would you permanently store proxy information for a text mode browser such as links?• 
Which name servers handle the redhat.com domain?• 
Send an E−mail to your local account. Try two different ways to send and read it. How can you check
that it really arrived?

• 

Does your machine accept anonymous FTP connections? How do you use the ncftp program to
authenticate with your user name and password?

• 

Does your machine run a web server? If not, make it do so. Check the log files!• 

10.6.2. Remote connections

From your local workstation, display a graphical application, such as xclock on your neighbour's
screen. The necessary accounts will have to be set up. Use a secure connection!

• 

Set up SSH keys so you can connect to your neighbour's machine without having to enter a password.• 
Make a backup copy of your home directory in /var/tmp on your neighbour's "backup server,"
using scp. Archive and compress before starting the data transfer! Connect to the remote host using
ssh, unpack the backup, and put one file back on the original machine using sftp.

• 

10.6.3. Security

Make a list of open (listening) ports on your machine.• 
Supposing you want to run a web server. Which services would you deactivate? How would you do
that?

• 

Install available updates.• 
How can you see who connected to your system?• 
Make a repetitive job that reminds you to change your password every month, and preferably the root
password as well.

• 
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Appendix A. Where to go from here?

This document gives an overview of useful books and sites.

A.1. Useful Books

A.1.1. General Linux

"Linux in a Nutshell" by Ellen Siever, Jessica P. Hackman, Stephen SPainhour, Stephen Figgins,
O'Reilly UK, ISBN 0596000251

• 

"Running Linux" by Matt Welsh, Matthias Kalle Dalheimer, Lar Kaufman, O'Reilly UK, ISBN
156592469X

• 

"Linux Unleashed" by Tim Parker, Bill Ball, David Pitts, Sams, ISBN 0672316889• 
"When You Can't Find Your System Administrator" by Linda Mui, O'Reilly UK, ISBN 1565921046• 
When you actually buy a distribution, it will contain a very decent user manual.• 

A.1.2. Editors

"Learning the Vi Editor" by Linda Lamb and Arnold Robbins, O'Reilly UK, ISBN 1565924266• 
"GNU Emacs Manual" by Richard M.Stallman, iUniverse.Com Inc., ISBN 0595100333• 
"Learning GNU Emacs" by Debra Cameron, Bill Rosenblatt and Eric Raymond, O'Reilly UK, ISBN
1565921526

• 

"Perl Cookbook" by Tom Christiansen and Nathan Torkington, O'Reilly UK, ISBN 1565922433• 

A.1.3. Shells

"Unix Shell Programming" by Stephen G.Kochan and Patrick H.Wood, Sams Publishing, ISBN
067248448X

• 

"Learning the Bash Shell" by Cameron Newham and Bill Rosenblatt, O'Reilly UK, ISBN
1565923472

• 

"The Complete Linux Shell Programming Training Course" by Ellie Quigley and Scott Hawkins,
Prentice Hall PTR, ISBN 0130406767

• 

"Linux and Unix Shell Programming" by David Tansley, Addison Wesley Publishing Company,
ISBN 0201674726

• 

"Unix C Shell Field Guide" by Gail and Paul Anderson, Prentice Hall, ISBN 013937468X• 

A.1.4. X Windows

"Gnome User's Guide" by the Gnome Community, iUniverse.Com Inc., ISBN 0595132251• 
"KDE Bible" by Dave Nash, Hungry Minds Inc., ISBN 0764546929• 
"The Concise Guide to XFree86 for Linux" by Aron HSiao, Que, ISBN 0789721821• 
"The New XFree86" by Bill Ball, Prima Publishing, ISBN 0761531521• 
"Beginning GTK+ and Gnome" by Peter Wright, Wrox Press, ISBN 1861003811• 
"KDE 2.0 Development" by David Sweet and Matthias Ettrich, Sams Publishing, ISBN 0672318911• 
"GTK+/Gnome Application Development" by Havoc Pennington, New Riders Publishing, ISBN
0735700788

• 
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A.1.5. Networking

"TCP/IP Illustrated, Volume I: The Protocols" by W. Richard Stevens, Addison−Wesley Professional
Computing Series, ISBN 0−201−63346−9

• 

"DNS and BIND" by Paul Albitz, Cricket Liu, Mike Loukides and Deborah Russell, O'Reilly &
Associates, ISBN 0596001584

• 

"The Concise Guide to DNS and BIND" by Nicolai Langfeldt, Que, ISBN 0789722739• 
"Implementing LDAP" by Mark Wilcox, Wrox Press, ISBN 1861002211• 
"Understanding and deploying LDAP directory services" by Tim Howes and co., Sams, ISBN
0672323168

• 

"Sendmail" by Brian Costales and Eric Allman, O'Reilly UK, ISBN 1565922220• 
"Removing the Spam : Email Processing and Filtering" by Geoff Mulligan, Addison Wesley
Publishing Company, ISBN 0201379570

• 

"Managing IMAP" by Dianna & Kevin Mullet, O'Reilly UK, ISBN 059600012X• 

A.2. Useful sites

A.2.1. General information

The Linux documentation project: all docs, manpages, HOWTOs, FAQs• 
Google for Linux: the specialized search engine• 
Deja: an archive of all newsgroup postings, including the comp.os.linux hierarchy• 
Slashdot: daily news• 
http://www.oreilly.com: books on Linux System and Network administration, Perl, Java, ...• 
POSIX: the standard• 
Linux HQ: Maintains a complete database of source, patches and documentation for various versions
of the Linux kernel.

• 

A.2.2. Architecture Specific References

Linux PPC: Linux on a Power PC (e.g. Apple PowerPC, PowerMac, Amiga, IBM
ThinkPad/PowerSeries/RS/6000, Motorola...)

• 

AlphaLinux: Linux on Alpha architecture (e.g. Digital Workstation)• 
Linux−MIPS: Linux on MIPS (e.g. SGI Indy)• 
Laptop HOWTO: Specific guidelines for installing and running Linux on laptops, configuration files
for various models.

• 

MkLinux: Linux on Apple• 

A.2.3. Distributions

The Fedora Project: RedHat−sponsored community effort OS.• 
Mandrake• 
Debian• 
TurboLinux• 
Slackware• 
SuSE• 
LinuxISO.org: CD images for all distributions.• 
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Knoppix: distribution that runs from a CD, you don't need to install anything for this one.• 
DistroWatch.com: find a Linux that goes with your style.• 
...• 

A.2.4. Software

Freshmeat: new software, software archives• 
OpenSSH: Secure SHell site• 
OpenOffice: MS compatible Office Suite• 
KDE: K Desktop site• 
GNU: GNU and GNU software• 
Gnome: The official Gnome site• 
Ximian: Ximian Gnome, Red Carpet package management system for StarOffice, Opera,
CodeWeavers, Loki Demos, Evolution, system packages, ...

• 

RPM Find: all RPM packages• 
Samba: MS Windows file and print services• 
Home of the OpenLDAP Project: OpenLDAP server/clients/utilities, FAQ and other documentation.• 
Sendmail Homepage: A thorough technical discussion of Sendmail features, includes configuration
examples.

• 

Netfilter: contains assorted information about iptables: HOWTO, FAQ, guides, ...• 
Official GIMP website: All information about the GNU Image Manipulation Program.• 
SourceForge.net: Open SOurce software development site.• 
vIm homepage• 
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Appendix B. DOS versus Linux commands

In this appendix, we matched DOS commands with their Linux equivalent.

As an extra means of orientation for new users with a Windows background, the table below lists MS−DOS
commands with their Linux counterparts. Keep in mind that Linux commands usually have a number of
options. Read the Info or man pages on the command to find out more.

Table B−1. Overview of DOS/Linux commands

DOS commandsLinux command

<command> /? man <command>

cd cd

chdir pwd

cls clear

copy cp

date date

del rm

dir ls

echo echo

edit vim (or other editor)

exit exit

fc diff

find grep

format mke2fs or mformat

mem free

mkdir mkdir

more more or even less

move mv

ren mv

time date
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Appendix C. Shell Features

This document gives an overview of common shell features (the same in every shell flavour)
and differing shell features (shell specific features).

C.1. Common features

The following features are standard in every shell. Note that the stop, suspend, jobs, bg and fg commands are
only available on systems that support job control.

Table C−1. Common Shell Features

Command Meaning

> Redirect output

>> Append to file

< Redirect input

<< "Here" document (redirect input)

| Pipe output

& Run process in background.

; Separate commands on same line

* Match any character(s) in filename

? Match single character in filename

[ ] Match any characters enclosed

( ) Execute in subshell

` ` Substitute output of enclosed command

" " Partial quote (allows variable and command expansion)

' ' Full quote (no expansion)

\ Quote following character

$var Use value for variable

$$ Process id

$0 Command name

$n nth argument (n from 0 to 9)

$* All arguments as a simple word

# Begin comment

bg Background execution

break Break from loop statements

cd Change directories

continue Resume a program loop

echo Display output

eval Evaluate arguments

exec Execute a new shell
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fg Foreground execution

jobs Show active jobs

kill Terminate running jobs

newgrp Change to a new group

shift Shift positional parameters

stop Suspend a background job

suspend Suspend a foreground job

time Time a command

umask Set or list file permissions

unset Erase variable or function definitions

wait Wait for a background job to finish

C.2. Differing features

The table below shows major differences between the standard shell (sh), Bourne Again SHell (bash), Korn
shell (ksh) and the C shell (csh).

Shell compatibility

Since the Bourne Again SHell is a superset of sh, all sh commands will also work in bash − but not vice
versa. bash has many more features of its own, and, as the table below demonstrates, many features
incorporated from other shells.

Since the Turbo C shell is a superset of csh, all csh commands will work in tcsh, but not the other way
round.

Table C−2. Differing Shell Features

sh bash ksh csh Meaning/Action

$ $ $ %
Default user
prompt

>| >| >! Force redirection

> file
2>&1

&> file or > file 2>&1
> file
2>&1

>& file
Redirect stdout
and stderr to
file

{ } { }
Expand elements
in list

`command``command` or $(command) $(command)`command`
Substitute output
of enclosed
command

$HOME $HOME $HOME $home Home directory

~ ~ ~
Home directory
symbol

~+, ~−, dirs ~+, ~− =−, =N
Access directory
stack
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var=value VAR=value var=value
set
var=value

Variable
assignment

export var export VAR=value
export
var=val

setenv var
val

Set environment
variable

${nnnn} ${nn}
More than 9
arguments can
be referenced

"$@" "$@" "$@"
All arguments as
separate words

$# $# $# $#argv
Number of
arguments

$? $? $? $status

Exit status of the
most recently
executed
command

$! $! $!

PID of most
recently
backgrounded
process

$− $− $− Current options

. file source file or . file . file
source
file

Read commands
in file

alias x='y' alias x=y alias x y
Name x stands
for command y

case case case
switch or
case

Choose
alternatives

done done done end
End a loop
statement

esac esac esac endsw
End case or
switch

exit n exit n exit n
exit
(expr)

Exit with a
status

for/do for/do for/do foreach
Loop through
variables

set −f, set −o
nullglob|dotglob|nocaseglob|noglob

noglob

Ignore
substitution
characters for
filename
generation

hash hash alias −t hashstat
Display hashed
commands
(tracked aliases)

hash cmds hash cmds
alias −t
cmds

rehash
Remember
command
locations

hash −r hash −r unhash
Forget command
locations
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history history history
List previous
commands

ArrowUp+Enter or !! r !!
Redo previous
command

!str r str !str
Redo last
command that
starts with "str"

!cmd:s/x/y/ r x=y cmd !cmd:s/x/y/

Replace "x" with
"y" in most
recent command
starting with
"cmd", then
execute.

if [ $i −eq
5 ]

if [ $i −eq 5 ] if ((i==5)) if ($i==5)
Sample
condition test

fi fi fi endif End if statement

ulimit ulimit ulimit limit
Set resource
limits

pwd pwd pwd dirs
Print working
directory

read read read $<
Read from
terminal

trap 2 trap 2 trap 2 onintr Ignore interrupts

unalias unalias unalias Remove aliases

until until until Begin until loop

while/do while/do while/do while
Begin while
loop

The Bourne Again SHell has many more features not listed here. This table is just to give you an idea of how
this shell incorporates all useful ideas from other shells: there are no blanks in the column for bash. More
information on features found only in Bash can be retrieved from the Bash info pages, in the "Bash Features"
section.

More information:

You should at least read one manual, being the manual of your shell. The preferred choice would be info
bash, bash being the GNU shell and easiest for beginners. Print it out and take it home, study it whenever you
have 5 minutes.

See Appendix B if you are having difficulties to assimilate shell commands.
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Appendix D. GNU Free Documentation License
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA
02111−1307 USA Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

D.1. Preamble

The purpose of this License is to make a manual, textbook, or other written document "free" in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be
free in the same sense. It complements the GNU General Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this License principally for works
whose purpose is instruction or reference.

D.2. Applicability and definitions

This License applies to any manual or other work that contains a notice placed by the copyright holder saying
it can be distributed under the terms of this License. The "Document", below, refers to any such manual or
work. Any member of the public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front−matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document's overall subject (or to
related matters) and contains nothing that could fall directly within that overall subject. (For example, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front−Cover Texts or Back−Cover
Texts, in the notice that says that the Document is released under this License.
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A "Transparent" copy of the Document means a machine−readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup has been designed to thwart or discourage subsequent modification by
readers is not Transparent. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard−conforming
simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine−generated HTML produced by some
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear in the title page. For works in formats which do not
have any title page as such, "Title Page" means the text near the most prominent appearance of the work's
title, preceding the beginning of the body of the text.

D.3. Verbatim copying

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

D.4. Copying in quantity

If you publish printed copies of the Document numbering more than 100, and the Document's license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front−Cover Texts on the front cover, and Back−Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with
all words of the title equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy
these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine−readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a publicly−accessible computer−network location containing a complete Transparent copy of the
Document, free of added material, which the general network−using public has access to download
anonymously at no charge using public−standard network protocols. If you use the latter option, you must
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take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

D.5. Modifications

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

A. 

List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

B. 

State on the Title page the name of the publisher of the Modified Version, as the publisher.C. 
Preserve all the copyright notices of the Document.D. 
Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.E. 
Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

F. 

Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document's license notice.

G. 

Include an unaltered copy of this License.H. 
Preserve the section entitled "History", and its title, and add to it an item stating at least the title, year,
new authors, and publisher of the Modified Version as given on the Title Page. If there is no section
entitled "History" in the Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

I. 

Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the "History" section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

J. 

In any section entitled "Acknowledgements" or "Dedications", preserve the section's title, and
preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

K. 

Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

L. 

Delete any section entitled "Endorsements". Such a section may not be included in the Modified
Version.

M. 

Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant Section.N. 

If the Modified Version includes new front−matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
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sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's
license notice. These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties−−for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front−Cover Text, and a passage of up to 25 words as a
Back−Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front−Cover Text and one of Back−Cover Text may be added by (or through arrangements made by) any one
entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

D.6. Combining documents

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may
be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the
original author or publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original documents,
forming one section entitled "History"; likewise combine any sections entitled "Acknowledgements", and any
sections entitled "Dedications". You must delete all sections entitled "Endorsements."

D.7. Collections of documents

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.
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D.8. Aggregation with independent works

A compilation of the Document or its derivatives with other separate and independent documents or works, in
or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the
Document, provided no compilation copyright is claimed for the compilation. Such a compilation is called an
"aggregate", and this License does not apply to the other self−contained works thus compiled with the
Document, on account of their being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document
is less than one quarter of the entire aggregate, the Document's Cover Texts may be placed on covers that
surround only the Document within the aggregate. Otherwise they must appear on covers around the whole
aggregate.

D.9. Translation

Translation is considered a kind of modification, so you may distribute translations of the Document under the
terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a translation of this License provided that you
also include the original English version of this License. In case of a disagreement between the translation and
the original English version of this License, the original English version will prevail.

D.10. Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this
License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

D.11. Future revisions of this license

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.
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D.12. How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation License, Version 1.1 or any
later version published by the Free Software Foundation; with the Invariant Sections being
LIST THEIR TITLES, with the Front−Cover Texts being LIST, and with the Back−Cover
Texts being LIST. A copy of the license is included in the section entitled "GNU Free
Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are
invariant. If you have no Front−Cover Texts, write "no Front−Cover Texts" instead of "Front−Cover Texts
being LIST"; likewise for Back−Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in
parallel under your choice of free software license, such as the GNU General Public License, to permit their
use in free software.
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Appendix E. proc.txt

This appendix holds the file proc.txt, which explains the proc file system on Linux
machines.

E.1. The /proc Filesystem

This appendix contains a file from the documentation that comes with your Linux system, the proc.txt
file. It explains in detail the contents of the /proc directory on your system. You'll find this directory very
helpful for gathering system information.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                       T H E  /proc   F I L E S Y S T E M
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/proc/sys         Terrehon Bowden <terrehon@pacbell.net>        October 7 1999
                  Bodo Bauer <bb@ricochet.net>

2.4.x update      Jorge Nerin <comandante@zaralinux.com>      November 14 2000
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Version 1.3                                              Kernel version 2.2.12
                                              Kernel version 2.4.0−test11−pre4
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Table of Contents
−−−−−−−−−−−−−−−−−

  0     Preface
  0.1   Introduction/Credits
  0.2   Legal Stuff

  1     Collecting System Information
  1.1   Process−Specific Subdirectories
  1.2   Kernel data
  1.3   IDE devices in /proc/ide
  1.4   Networking info in /proc/net
  1.5   SCSI info
  1.6   Parallel port info in /proc/parport
  1.7   TTY info in /proc/tty

  2     Modifying System Parameters
  2.1   /proc/sys/fs − File system data
  2.2   /proc/sys/fs/binfmt_misc − Miscellaneous binary formats
  2.3   /proc/sys/kernel − general kernel parameters
  2.4   /proc/sys/vm − The virtual memory subsystem
  2.5   /proc/sys/dev − Device specific parameters
  2.6   /proc/sys/sunrpc − Remote procedure calls
  2.7   /proc/sys/net − Networking stuff
  2.8   /proc/sys/net/ipv4 − IPV4 settings
  2.9   Appletalk
  2.10  IPX

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Preface
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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−−−−−−−−−−−−−−−−−−−−−−−−

This documentation is  part of a soon (or  so we hope) to be  released book on
the SuSE  Linux distribution. As  there is  no complete documentation  for the
/proc file system and we've used  many freely available sources to write these
chapters, it  seems only fair  to give the work  back to the  Linux community.
This work is  based on the 2.2.*  kernel version and the  upcoming 2.4.*. I'm
afraid it's still far from complete, but we  hope it will be useful. As far as
we know, it is the first 'all−in−one' document about the /proc file system. It
is focused  on the Intel  x86 hardware,  so if you  are looking for  PPC, ARM,
SPARC, APX, etc., features, you probably  won't find what you are looking for.
It also only covers IPv4 networking, not IPv6 nor other protocols − sorry. But
additions and patches  are welcome and will  be added to this  document if you
mail them to Bodo.

We'd like  to  thank Alan Cox, Rik van Riel, and Alexey Kuznetsov and a lot of
other people for help compiling this documentation. We'd also like to extend a
special thank  you to Andi Kleen for documentation, which we relied on heavily
to create  this  document,  as well as the additional information he provided.
Thanks to  everybody  else  who contributed source or docs to the Linux kernel
and helped create a great piece of software... :)

If you  have  any comments, corrections or additions, please don't hesitate to
contact Bodo  Bauer  at  bb@ricochet.net.  We'll  be happy to add them to this
document.

The   latest   version    of   this   document   is    available   online   at
http://skaro.nightcrawler.com/~bb/Docs/Proc as HTML version.

If  the above  direction does  not works  for you,  ypu could  try the  kernel
mailing  list  at  linux−kernel@vger.kernel.org  and/or try  to  reach  me  at
comandante@zaralinux.com.

0.2 Legal Stuff
−−−−−−−−−−−−−−−

We don't  guarantee  the  correctness  of this document, and if you come to us
complaining about  how  you  screwed  up  your  system  because  of  incorrect
documentation, we won't feel responsible...

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
CHAPTER 1: COLLECTING SYSTEM INFORMATION
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
In This Chapter
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
* Investigating  the  properties  of  the  pseudo  file  system  /proc and its
  ability to provide information on the running Linux system
* Examining /proc's structure
* Uncovering  various  information  about the kernel and the processes running
  on the system
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The proc  file  system acts as an interface to internal data structures in the
kernel. It  can  be  used to obtain information about the system and to change
certain kernel parameters at runtime (sysctl).

First, we'll  take  a  look  at the read−only parts of /proc. In Chapter 2, we
show you how you can use /proc/sys to change settings.
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1.1 Process−Specific Subdirectories
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The directory  /proc  contains  (among other things) one subdirectory for each
process running on the system, which is named after the process ID (PID).

The link  self  points  to  the  process reading the file system. Each process
subdirectory has the entries listed in Table 1−1.

Table 1−1: Process specific entries in /proc 
..............................................................................
 File    Content                                        
 cmdline Command line arguments                         
 cpu     Current and last cpu in wich it was executed           (2.4)(smp)
 cwd     Link to the current working directory
 environ Values of environment variables      
 exe     Link to the executable of this process
 fd      Directory, which contains all file descriptors 
 maps    Memory maps to executables and library files           (2.4)
 mem     Memory held by this process                    
 root    Link to the root directory of this process
 stat    Process status                                 
 statm   Process memory status information              
 status  Process status in human readable form          
..............................................................................

For example, to get the status information of a process, all you have to do is
read the file /proc/PID/status:

  >cat /proc/self/status 
  Name:   cat 
  State:  R (running) 
  Pid:    5452 
  PPid:   743 
  TracerPid:      0                                             (2.4)
  Uid:    501     501     501     501 
  Gid:    100     100     100     100 
  Groups: 100 14 16 
  VmSize:     1112 kB 
  VmLck:         0 kB 
  VmRSS:       348 kB 
  VmData:       24 kB 
  VmStk:        12 kB 
  VmExe:         8 kB 
  VmLib:      1044 kB 
  SigPnd: 0000000000000000 
  SigBlk: 0000000000000000 
  SigIgn: 0000000000000000 
  SigCgt: 0000000000000000 
  CapInh: 00000000fffffeff 
  CapPrm: 0000000000000000 
  CapEff: 0000000000000000 

This shows you nearly the same information you would get if you viewed it with
the ps  command.  In  fact,  ps  uses  the  proc  file  system  to  obtain its
information. The  statm  file  contains  more  detailed  information about the
process memory usage. Its seven fields are explained in Table 1−2.

Table 1−2: Contents of the statm files 
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..............................................................................
 File     Content                         
 size     total program size              
 resident size of memory portions         
 shared   number of pages that are shared 
 trs      number of pages that are 'code' 
 drs      number of pages of data/stack   
 lrs      number of pages of library      
 dt       number of dirty pages           
..............................................................................

1.2 Kernel data
−−−−−−−−−−−−−−−

Similar to  the  process entries, the kernel data files give information about
the running kernel. The files used to obtain this information are contained in
/proc and  are  listed  in Table 1−3. Not all of these will be present in your
system. It  depends  on the kernel configuration and the loaded modules, which
files are there, and which are missing.

Table 1−3: Kernel info in /proc 
..............................................................................
 File        Content                                           
 apm         Advanced power management info                    
 bus         Directory containing bus specific information     
 cmdline     Kernel command line                               
 cpuinfo     Info about the CPU                                
 devices     Available devices (block and character)           
 dma         Used DMS channels                                 
 filesystems Supported filesystems                             
 driver      Various drivers grouped here, currently rtc        (2.4)
 execdomains Execdomains, related to security                   (2.4)
 fb          Frame Buffer devices                               (2.4)
 fs          File system parameters, currently nfs/exports      (2.4)
 ide         Directory containing info about the IDE subsystem 
 interrupts  Interrupt usage                                   
 iomem       Memory map                                         (2.4)
 ioports     I/O port usage                                    
 irq         Masks for irq to cpu affinity                      (2.4)(smp?)
 isapnp      ISA PnP (Plug&Play) Info                           (2.4)
 kcore       Kernel core image (can be ELF or A.OUT(deprecated in 2.4))   
 kmsg        Kernel messages                                   
 ksyms       Kernel symbol table                               
 loadavg     Load average of last 1, 5 & 15 minutes                
 locks       Kernel locks                                      
 meminfo     Memory info                                       
 misc        Miscellaneous                                     
 modules     List of loaded modules                            
 mounts      Mounted filesystems                               
 net         Networking info (see text)                        
 partitions  Table of partitions known to the system           
 pci         Depreciated info of PCI bus (new way −> /proc/bus/pci/, 
             decoupled by lspci                                 (2.4)
 rtc         Real time clock                                   
 scsi        SCSI info (see text)                              
 slabinfo    Slab pool info                                    
 stat        Overall statistics                                
 swaps       Swap space utilization                            
 sys         See chapter 2                                     
 sysvipc     Info of SysVIPC Resources (msg, sem, shm)          (2.4)
 tty         Info of tty drivers
 uptime      System uptime                                     
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 version     Kernel version                                    
 video       bttv info of video resources                       (2.4)
..............................................................................

You can,  for  example,  check  which interrupts are currently in use and what
they are used for by looking in the file /proc/interrupts:

  > cat /proc/interrupts 
             CPU0        
    0:    8728810          XT−PIC  timer 
    1:        895          XT−PIC  keyboard 
    2:          0          XT−PIC  cascade 
    3:     531695          XT−PIC  aha152x 
    4:    2014133          XT−PIC  serial 
    5:      44401          XT−PIC  pcnet_cs 
    8:          2          XT−PIC  rtc 
   11:          8          XT−PIC  i82365 
   12:     182918          XT−PIC  PS/2 Mouse 
   13:          1          XT−PIC  fpu 
   14:    1232265          XT−PIC  ide0 
   15:          7          XT−PIC  ide1 
  NMI:          0 

In 2.4.* a couple of lines where added to this file LOC & ERR (this time is the
output of a SMP machine):

  > cat /proc/interrupts 

             CPU0       CPU1       
    0:    1243498    1214548    IO−APIC−edge  timer
    1:       8949       8958    IO−APIC−edge  keyboard
    2:          0          0          XT−PIC  cascade
    5:      11286      10161    IO−APIC−edge  soundblaster
    8:          1          0    IO−APIC−edge  rtc
    9:      27422      27407    IO−APIC−edge  3c503
   12:     113645     113873    IO−APIC−edge  PS/2 Mouse
   13:          0          0          XT−PIC  fpu
   14:      22491      24012    IO−APIC−edge  ide0
   15:       2183       2415    IO−APIC−edge  ide1
   17:      30564      30414   IO−APIC−level  eth0
   18:        177        164   IO−APIC−level  bttv
  NMI:    2457961    2457959 
  LOC:    2457882    2457881 
  ERR:       2155

NMI is incremented in this case because every timer interrupt generates a NMI
(Non Maskable Interrupt) which is used by the NMI Watchdog to detect lookups.

LOC is the local interrupt counter of the internal APIC of every CPU.

ERR is incremented in the case of errors in the IO−APIC bus (the bus that
connects the CPUs in a SMP system. This means that an error has been detected,
the IO−APIC automatically retry the transmission, so it should not be a big
problem, but you should read the SMP−FAQ.

In this context it could be interesting to note the new irq directory in 2.4.
It could be used to set IRQ to CPU affinity, this means that you can "hook" an
IRQ to only one CPU, or to exclude a CPU of handling IRQs. The contents of the
irq subdir is one subdir for each IRQ, and one file; prof_cpu_mask

For example 
  > ls /proc/irq/
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  0  10  12  14  16  18  2  4  6  8  prof_cpu_mask
  1  11  13  15  17  19  3  5  7  9
  > ls /proc/irq/0/
  smp_affinity

The contents of the prof_cpu_mask file and each smp_affinity file for each IRQ
is the same by default:

  > cat /proc/irq/0/smp_affinity 
  ffffffff

It's a bitmask, in wich you can specify wich CPUs can handle the IRQ, you can
set it by doing:

  > echo 1 > /proc/irq/prof_cpu_mask

This means that only the first CPU will handle the IRQ, but you can also echo 5
wich means that only the first and fourth CPU can handle the IRQ.

The way IRQs are routed is handled by the IO−APIC, and it's Round Robin
between all the CPUs which are allowed to handle it. As usual the kernel has
more info than you and does a better job than you, so the defaults are the
best choice for almost everyone.

There are  three  more  important subdirectories in /proc: net, scsi, and sys.
The general  rule  is  that  the  contents,  or  even  the  existence of these
directories, depend  on your kernel configuration. If SCSI is not enabled, the
directory scsi  may  not  exist. The same is true with the net, which is there
only when networking support is present in the running kernel.

The slabinfo  file  gives  information  about  memory usage at the slab level.
Linux uses  slab  pools for memory management above page level in version 2.2.
Commonly used  objects  have  their  own  slab  pool (such as network buffers,
directory cache, and so on).

1.3 IDE devices in /proc/ide
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The subdirectory /proc/ide contains information about all IDE devices of which
the kernel  is  aware.  There is one subdirectory for each IDE controller, the
file drivers  and a link for each IDE device, pointing to the device directory
in the controller specific subtree.

The file  drivers  contains general information about the drivers used for the
IDE devices:

  > cat /proc/ide/drivers 
  ide−cdrom version 4.53 
  ide−disk version 1.08 

More detailed  information  can  be  found  in  the  controller  specific
subdirectories. These  are  named  ide0,  ide1  and  so  on.  Each  of  these
directories contains the files shown in table 1−4.

Table 1−4: IDE controller info in  /proc/ide/ide? 
..............................................................................
 File    Content                                 
 channel IDE channel (0 or 1)                    
 config  Configuration (only for PCI/IDE bridge) 
 mate    Mate name                               
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 model   Type/Chipset of IDE controller          
..............................................................................

Each device  connected  to  a  controller  has  a separate subdirectory in the
controllers directory.  The  files  listed in table 1−5 are contained in these
directories.

Table 1−5: IDE device information 
..............................................................................
 File             Content                                    
 cache            The cache                                  
 capacity         Capacity of the medium (in 512Byte blocks) 
 driver           driver and version                         
 geometry         physical and logical geometry              
 identify         device identify block                      
 media            media type                                 
 model            device identifier                          
 settings         device setup                               
 smart_thresholds IDE disk management thresholds             
 smart_values     IDE disk management values                 
..............................................................................

The most  interesting  file is settings. This file contains a nice overview of
the drive parameters:

  # cat /proc/ide/ide0/hda/settings 
  name                    value           min             max             mode 
  −−−−                    −−−−−           −−−             −−−             −−−− 
  bios_cyl                526             0               65535           rw 
  bios_head               255             0               255             rw 
  bios_sect               63              0               63              rw 
  breada_readahead        4               0               127             rw 
  bswap                   0               0               1               r 
  file_readahead          72              0               2097151         rw 
  io_32bit                0               0               3               rw 
  keepsettings            0               0               1               rw 
  max_kb_per_request      122             1               127             rw 
  multcount               0               0               8               rw 
  nice1                   1               0               1               rw 
  nowerr                  0               0               1               rw 
  pio_mode                write−only      0               255             w 
  slow                    0               0               1               rw 
  unmaskirq               0               0               1               rw 
  using_dma               0               0               1               rw 

1.4 Networking info in /proc/net
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The subdirectory  /proc/net  follows  the  usual  pattern. Table 1−6 shows the
additional values  you  get  for  IP  version 6 if you configure the kernel to
support this. Table 1−7 lists the files and their meaning.

Table 1−6: IPv6 info in /proc/net 
..............................................................................
 File       Content                                               
 udp6       UDP sockets (IPv6)                                    
 tcp6       TCP sockets (IPv6)                                    
 raw6       Raw device statistics (IPv6)                          
 igmp6      IP multicast addresses, which this host joined (IPv6) 
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 if_inet6   List of IPv6 interface addresses                      
 ipv6_route Kernel routing table for IPv6                         
 rt6_stats  Global IPv6 routing tables statistics                 
 sockstat6  Socket statistics (IPv6)                              
 snmp6      Snmp data (IPv6)                                      
..............................................................................

Table 1−7: Network info in /proc/net 
..............................................................................
 File          Content                                                         
 arp           Kernel  ARP table                                               
 dev           network devices with statistics                                 
 dev_mcast     the Layer2 multicast groups a device is listening too
               (interface index, label, number of references, number of bound
               addresses). 
 dev_stat      network device status                                           
 ip_fwchains   Firewall chain linkage                                          
 ip_fwnames    Firewall chain names                                            
 ip_masq       Directory containing the masquerading tables                    
 ip_masquerade Major masquerading table                                        
 netstat       Network statistics                                              
 raw           raw device statistics                                           
 route         Kernel routing table                                            
 rpc           Directory containing rpc info                                   
 rt_cache      Routing cache                                                   
 snmp          SNMP data                                                       
 sockstat      Socket statistics                                               
 tcp           TCP  sockets                                                    
 tr_rif        Token ring RIF routing table                                    
 udp           UDP sockets                                                     
 unix          UNIX domain sockets                                             
 wireless      Wireless interface data (Wavelan etc)                           
 igmp          IP multicast addresses, which this host joined                  
 psched        Global packet scheduler parameters.                             
 netlink       List of PF_NETLINK sockets                                      
 ip_mr_vifs    List of multicast virtual interfaces                            
 ip_mr_cache   List of multicast routing cache                                 
..............................................................................

You can  use  this  information  to see which network devices are available in
your system and how much traffic was routed over those devices:

  > cat /proc/net/dev 
  Inter−|Receive                                                   |[... 
   face |bytes    packets errs drop fifo frame compressed multicast|[... 
      lo:  908188   5596     0    0    0     0          0         0 [...         
    ppp0:15475140  20721   410    0    0   410          0         0 [...  
    eth0:  614530   7085     0    0    0     0          0         1 [... 

  ...] Transmit 
  ...] bytes    packets errs drop fifo colls carrier compressed 
  ...]  908188     5596    0    0    0     0       0          0 
  ...] 1375103    17405    0    0    0     0       0          0 
  ...] 1703981     5535    0    0    0     3       0          0 

In addition, each Channel Bond interface has it's own directory.  For
example, the bond0 device will have a directory called /proc/net/bond0/.
It will contain information that is specific to that bond, such as the
current slaves of the bond, the link status of the slaves, and how
many times the slaves link has failed.
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1.5 SCSI info
−−−−−−−−−−−−−

If you  have  a  SCSI  host adapter in your system, you'll find a subdirectory
named after  the driver for this adapter in /proc/scsi. You'll also see a list
of all recognized SCSI devices in /proc/scsi:

  >cat /proc/scsi/scsi 
  Attached devices: 
  Host: scsi0 Channel: 00 Id: 00 Lun: 00 
    Vendor: IBM      Model: DGHS09U          Rev: 03E0 
    Type:   Direct−Access                    ANSI SCSI revision: 03 
  Host: scsi0 Channel: 00 Id: 06 Lun: 00 
    Vendor: PIONEER  Model: CD−ROM DR−U06S   Rev: 1.04 
    Type:   CD−ROM                           ANSI SCSI revision: 02 

The directory  named  after  the driver has one file for each adapter found in
the system.  These  files  contain information about the controller, including
the used  IRQ  and  the  IO  address range. The amount of information shown is
dependent on  the adapter you use. The example shows the output for an Adaptec
AHA−2940 SCSI adapter:

  > cat /proc/scsi/aic7xxx/0 

  Adaptec AIC7xxx driver version: 5.1.19/3.2.4 
  Compile Options: 
    TCQ Enabled By Default : Disabled 
    AIC7XXX_PROC_STATS     : Disabled 
    AIC7XXX_RESET_DELAY    : 5 
  Adapter Configuration: 
             SCSI Adapter: Adaptec AHA−294X Ultra SCSI host adapter 
                             Ultra Wide Controller 
      PCI MMAPed I/O Base: 0xeb001000 
   Adapter SEEPROM Config: SEEPROM found and used. 
        Adaptec SCSI BIOS: Enabled 
                      IRQ: 10 
                     SCBs: Active 0, Max Active 2, 
                           Allocated 15, HW 16, Page 255 
               Interrupts: 160328 
        BIOS Control Word: 0x18b6 
     Adapter Control Word: 0x005b 
     Extended Translation: Enabled 
  Disconnect Enable Flags: 0xffff 
       Ultra Enable Flags: 0x0001 
   Tag Queue Enable Flags: 0x0000 
  Ordered Queue Tag Flags: 0x0000 
  Default Tag Queue Depth: 8 
      Tagged Queue By Device array for aic7xxx host instance 0: 
        {255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255} 
      Actual queue depth per device for aic7xxx host instance 0: 
        {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} 
  Statistics: 
  (scsi0:0:0:0) 
    Device using Wide/Sync transfers at 40.0 MByte/sec, offset 8 
    Transinfo settings: current(12/8/1/0), goal(12/8/1/0), user(12/15/1/0) 
    Total transfers 160151 (74577 reads and 85574 writes) 
  (scsi0:0:6:0) 
    Device using Narrow/Sync transfers at 5.0 MByte/sec, offset 15 
    Transinfo settings: current(50/15/0/0), goal(50/15/0/0), user(50/15/0/0) 
    Total transfers 0 (0 reads and 0 writes) 
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1.6 Parallel port info in /proc/parport
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The directory  /proc/parport  contains information about the parallel ports of
your system.  It  has  one  subdirectory  for  each port, named after the port
number (0,1,2,...).

These directories contain the four files shown in Table 1−8.

Table 1−8: Files in /proc/parport 
..............................................................................
 File      Content                                                             
 autoprobe Any IEEE−1284 device ID information that has been acquired.         
 devices   list of the device drivers using that port. A + will appear by the
           name of the device currently using the port (it might not appear
           against any). 
 hardware  Parallel port's base address, IRQ line and DMA channel.             
 irq       IRQ that parport is using for that port. This is in a separate
           file to allow you to alter it by writing a new value in (IRQ
           number or none). 
..............................................................................

1.7 TTY info in /proc/tty
−−−−−−−−−−−−−−−−−−−−−−−−−

Information about  the  available  and actually used tty's can be found in the
directory /proc/tty.You'll  find  entries  for drivers and line disciplines in
this directory, as shown in Table 1−9.

Table 1−9: Files in /proc/tty 
..............................................................................
 File          Content                                        
 drivers       list of drivers and their usage                
 ldiscs        registered line disciplines                    
 driver/serial usage statistic and status of single tty lines 
..............................................................................

To see  which  tty's  are  currently in use, you can simply look into the file
/proc/tty/drivers:

  > cat /proc/tty/drivers 
  pty_slave            /dev/pts      136   0−255 pty:slave 
  pty_master           /dev/ptm      128   0−255 pty:master 
  pty_slave            /dev/ttyp       3   0−255 pty:slave 
  pty_master           /dev/pty        2   0−255 pty:master 
  serial               /dev/cua        5   64−67 serial:callout 
  serial               /dev/ttyS       4   64−67 serial 
  /dev/tty0            /dev/tty0       4       0 system:vtmaster 
  /dev/ptmx            /dev/ptmx       5       2 system 
  /dev/console         /dev/console    5       1 system:console 
  /dev/tty             /dev/tty        5       0 system:/dev/tty 
  unknown              /dev/tty        4    1−63 console 

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Summary
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
The /proc file system serves information about the running system. It not only
allows access to process data but also allows you to request the kernel status
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by reading files in the hierarchy.

The directory  structure  of /proc reflects the types of information and makes
it easy, if not obvious, where to look for specific data.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
CHAPTER 2: MODIFYING SYSTEM PARAMETERS
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
In This Chapter
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
* Modifying kernel parameters by writing into files found in /proc/sys
* Exploring the files which modify certain parameters
* Review of the /proc/sys file tree
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A very  interesting part of /proc is the directory /proc/sys. This is not only
a source  of  information,  it also allows you to change parameters within the
kernel. Be  very  careful  when attempting this. You can optimize your system,
but you  can  also  cause  it  to  crash.  Never  alter kernel parameters on a
production system.  Set  up  a  development machine and test to make sure that
everything works  the  way  you want it to. You may have no alternative but to
reboot the machine once an error has been made.

To change  a  value,  simply  echo  the new value into the file. An example is
given below  in the section on the file system data. You need to be root to do
this. You  can  create  your  own  boot script to perform this every time your
system boots.

The files  in /proc/sys can be used to fine tune and monitor miscellaneous and
general things  in  the operation of the Linux kernel. Since some of the files
can inadvertently  disrupt  your  system,  it  is  advisable  to  read  both
documentation and  source  before actually making adjustments. In any case, be
very careful  when  writing  to  any  of these files. The entries in /proc may
change slightly between the 2.1.* and the 2.2 kernel, so if there is any doubt
review the kernel documentation in the directory /usr/src/linux/Documentation.
This chapter  is  heavily  based  on the documentation included in the pre 2.2
kernels, and became part of it in version 2.2.1 of the Linux kernel.

2.1 /proc/sys/fs − File system data
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

This subdirectory  contains  specific  file system, file handle, inode, dentry
and quota information.

Currently, these files are in /proc/sys/fs:

dentry−state
−−−−−−−−−−−−

Status of  the  directory  cache.  Since  directory  entries  are  dynamically
allocated and  deallocated,  this  file indicates the current status. It holds
six values, in which the last two are not used and are always zero. The others
are listed in table 2−1.

Table 2−1: Status files of the directory cache 
..............................................................................
 File       Content                                                            
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 nr_dentry  Almost always zero                                                 
 nr_unused  Number of unused cache entries                                     
 age_limit  
            in seconds after the entry may be reclaimed, when memory is short 
 want_pages internally                                                         
..............................................................................

dquot−nr and dquot−max
−−−−−−−−−−−−−−−−−−−−−−

The file dquot−max shows the maximum number of cached disk quota entries.

The file  dquot−nr  shows  the  number of allocated disk quota entries and the
number of free disk quota entries.

If the number of available cached disk quotas is very low and you have a large
number of simultaneous system users, you might want to raise the limit.

file−nr and file−max
−−−−−−−−−−−−−−−−−−−−

The kernel  allocates file handles dynamically, but doesn't free them again at
this time.

The value  in  file−max  denotes  the  maximum number of file handles that the
Linux kernel will allocate. When you get a lot of error messages about running
out of  file handles, you might want to raise this limit. The default value is
4096. To change it, just write the new number into the file:

  # cat /proc/sys/fs/file−max 
  4096 
  # echo 8192 > /proc/sys/fs/file−max 
  # cat /proc/sys/fs/file−max 
  8192 

This method  of  revision  is  useful  for  all customizable parameters of the
kernel − simply echo the new value to the corresponding file.

The three  values  in file−nr denote the number of allocated file handles, the
number of  used file handles, and the maximum number of file handles. When the
allocated file  handles  come close to the maximum, but the number of actually
used ones  is  far  behind,  you've  encountered  a peak in your usage of file
handles and you don't need to increase the maximum.

inode−state and inode−nr
−−−−−−−−−−−−−−−−−−−−−−−−

The file inode−nr contains the first two items from inode−state, so we'll skip
to that file...

inode−state contains  two  actual numbers and five dummy values. The numbers
are nr_inodes and nr_free_inodes (in order of appearance).

nr_inodes
~~~~~~~~~

Denotes the  number  of  inodes the system has allocated. This number will
grow and shrink dynamically.

nr_free_inodes
−−−−−−−−−−−−−−
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Represents the  number of free inodes. Ie. The number of inuse inodes is
(nr_inodes − nr_free_inodes).

super−nr and super−max
−−−−−−−−−−−−−−−−−−−−−−

Again, super  block structures are allocated by the kernel, but not freed. The
file super−max  contains  the  maximum  number  of super block handlers, where
super−nr shows the number of currently allocated ones.

Every mounted file system needs a super block, so if you plan to mount lots of
file systems, you may want to increase these numbers.

2.2 /proc/sys/fs/binfmt_misc − Miscellaneous binary formats
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Besides these  files, there is the subdirectory /proc/sys/fs/binfmt_misc. This
handles the kernel support for miscellaneous binary formats.

Binfmt_misc provides  the ability to register additional binary formats to the
Kernel without  compiling  an additional module/kernel. Therefore, binfmt_misc
needs to  know magic numbers at the beginning or the filename extension of the
binary.

It works by maintaining a linked list of structs that contain a description of
a binary  format,  including  a  magic  with size (or the filename extension),
offset and  mask,  and  the  interpreter name. On request it invokes the given
interpreter with  the  original  program  as  argument,  as  binfmt_java  and
binfmt_em86 and  binfmt_mz  do.  Since binfmt_misc does not define any default
binary−formats, you have to register an additional binary−format.

There are two general files in binfmt_misc and one file per registered format.
The two general files are register and status.

Registering a new binary format
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

To register a new binary format you have to issue the command

  echo :name:type:offset:magic:mask:interpreter: > /proc/sys/fs/binfmt_misc/register 

with appropriate  name (the name for the /proc−dir entry), offset (defaults to
0, if  omitted),  magic, mask (which can be omitted, defaults to all 0xff) and
last but  not  least,  the  interpreter that is to be invoked (for example and
testing /bin/echo).  Type  can be M for usual magic matching or E for filename
extension matching (give extension in place of magic).

Check or reset the status of the binary format handler
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

If you  do a cat on the file /proc/sys/fs/binfmt_misc/status, you will get the
current status (enabled/disabled) of binfmt_misc. Change the status by echoing
0 (disables)  or  1  (enables)  or  −1  (caution:  this  clears all previously
registered binary  formats)  to status. For example echo 0 > status to disable
binfmt_misc (temporarily).

Status of a single handler
−−−−−−−−−−−−−−−−−−−−−−−−−−
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Each registered  handler has an entry in /proc/sys/fs/binfmt_misc. These files
perform the  same function as status, but their scope is limited to the actual
binary format.  By  cating this file, you also receive all related information
about the interpreter/magic of the binfmt.

Example usage of binfmt_misc (emulate binfmt_java)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

  cd /proc/sys/fs/binfmt_misc  
  echo ':Java:M::\xca\xfe\xba\xbe::/usr/local/java/bin/javawrapper:' > register  
  echo ':HTML:E::html::/usr/local/java/bin/appletviewer:' > register  
  echo ':Applet:M::<applet::/usr/local/java/bin/appletviewer:' > register 
  echo ':DEXE:M::\x0eDEX::/usr/bin/dosexec:' > register 

These four  lines  add  support  for  Java  executables and Java applets (like
binfmt_java, additionally  recognizing the .html extension with no need to put
<!−−applet> to  every  applet  file).  You  have  to  install  the JDK and the
shell−script /usr/local/java/bin/javawrapper  too.  It  works  around  the
brokenness of  the Java filename handling. To add a Java binary, just create a
link to the class−file somewhere in the path.

2.3 /proc/sys/kernel − general kernel parameters
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

This directory  reflects  general  kernel  behaviors. As I've said before, the
contents depend  on  your  configuration.  Here you'll find the most important
files, along with descriptions of what they mean and how to use them.

acct
−−−−

The file contains three values; highwater, lowwater, and frequency.

It exists  only  when  BSD−style  process  accounting is enabled. These values
control its behavior. If the free space on the file system where the log lives
goes below  lowwater  percentage,  accounting  suspends.  If  it  goes  above
highwater percentage,  accounting  resumes. Frequency determines how often you
check the amount of free space (value is in seconds). Default settings are: 4,
2, and  30.  That is, suspend accounting if there is less than 2 percent free;
resume it  if we have a value of 3 or more percent; consider information about
the amount of free space valid for 30 seconds

ctrl−alt−del
−−−−−−−−−−−−

When the value in this file is 0, ctrl−alt−del is trapped and sent to the init
program to  handle a graceful restart. However, when the value is greater that
zero, Linux's  reaction  to  this key combination will be an immediate reboot,
without syncing its dirty buffers.

[NOTE]
    When a  program  (like  dosemu)  has  the  keyboard  in  raw  mode,  the
    ctrl−alt−del is  intercepted  by  the  program  before it ever reaches the
    kernel tty  layer,  and  it is up to the program to decide what to do with
    it.

domainname and hostname
−−−−−−−−−−−−−−−−−−−−−−−

These files  can  be controlled to set the NIS domainname and hostname of your
box. For the classic darkstar.frop.org a simple:
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  # echo "darkstar" > /proc/sys/kernel/hostname 
  # echo "frop.org" > /proc/sys/kernel/domainname 

would suffice to set your hostname and NIS domainname.

osrelease, ostype and version
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The names make it pretty obvious what these fields contain:

  > cat /proc/sys/kernel/osrelease 
  2.2.12 

  > cat /proc/sys/kernel/ostype 
  Linux 

  > cat /proc/sys/kernel/version 
  #4 Fri Oct 1 12:41:14 PDT 1999 

The files  osrelease and ostype should be clear enough. Version needs a little
more clarification.  The  #4 means that this is the 4th kernel built from this
source base and the date after it indicates the time the kernel was built. The
only way to tune these values is to rebuild the kernel.

panic
−−−−−

The value  in  this  file  represents  the  number of seconds the kernel waits
before rebooting  on  a  panic.  When  you  use  the  software  watchdog,  the
recommended setting  is  60. If set to 0, the auto reboot after a kernel panic
is disabled, which is the default setting.

printk
−−−−−−

The four values in printk denote
* console_loglevel,
* default_message_loglevel,
* minimum_console_level and
* default_console_loglevel
respectively.

These values  influence  printk()  behavior  when  printing  or  logging error
messages, which  come  from  inside  the  kernel.  See  syslog(2)  for  more
information on the different log levels.

console_loglevel
−−−−−−−−−−−−−−−−

Messages with a higher priority than this will be printed to the console.

default_message_level
−−−−−−−−−−−−−−−−−−−−−

Messages without an explicit priority will be printed with this priority.

minimum_console_loglevel
−−−−−−−−−−−−−−−−−−−−−−−−

Introduction to Linux

Appendix E. proc.txt 205



Minimum (highest) value to which the console_loglevel can be set.

default_console_loglevel
−−−−−−−−−−−−−−−−−−−−−−−−

Default value for console_loglevel.

sg−big−buff
−−−−−−−−−−−

This file  shows  the size of the generic SCSI (sg) buffer. At this point, you
can't tune  it  yet,  but  you  can  change  it  at  compile  time  by editing
include/scsi/sg.h and changing the value of SG_BIG_BUFF.

If you use a scanner with SANE (Scanner Access Now Easy) you might want to set
this to a higher value. Refer to the SANE documentation on this issue.

modprobe
−−−−−−−−

The location  where  the  modprobe  binary  is  located.  The kernel uses this
program to load modules on demand.

2.4 /proc/sys/vm − The virtual memory subsystem
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The files  in  this directory can be used to tune the operation of the virtual
memory (VM)  subsystem  of  the  Linux  kernel.  In addition, one of the files
(bdflush) has some influence on disk usage.

bdflush
−−−−−−−

This file  controls  the  operation of the bdflush kernel daemon. It currently
contains nine  integer  values,  six of which are actually used by the kernel.
They are listed in table 2−2.

Table 2−2: Parameters in /proc/sys/vm/bdflush 
..............................................................................
 Value      Meaning                                                            
 nfract     Percentage of buffer cache dirty to  activate bdflush              
 ndirty     Maximum number of dirty blocks to  write out per wake−cycle        
 nrefill    Number of clean buffers to try to obtain  each time we call refill 
 nref_dirt  buffer threshold for activating bdflush when trying to refill
            buffers. 
 dummy      Unused                                                             
 age_buffer Time for normal buffer to age before we flush it                   
 age_super  Time for superblock to age before we flush it                      
 dummy      Unused                                                             
 dummy      Unused                                                             
..............................................................................

nfract
−−−−−−

This parameter  governs  the  maximum  number  of  dirty buffers in the buffer
cache. Dirty means that the contents of the buffer still have to be written to
disk (as  opposed  to  a  clean  buffer,  which  can just be forgotten about).
Setting this  to  a  higher value means that Linux can delay disk writes for a
long time, but it also means that it will have to do a lot of I/O at once when
memory becomes short. A lower value will spread out disk I/O more evenly.
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ndirty
−−−−−−

Ndirty gives the maximum number of dirty buffers that bdflush can write to the
disk at  one  time.  A high value will mean delayed, bursty I/O, while a small
value can lead to memory shortage when bdflush isn't woken up often enough.

nrefill
−−−−−−−

This is  the  number  of  buffers  that  bdflush  will add to the list of free
buffers when  refill_freelist()  is  called.  It is necessary to allocate free
buffers beforehand,  since  the  buffers  are  often  different sizes than the
memory pages  and some bookkeeping needs to be done beforehand. The higher the
number, the  more  memory  will be wasted and the less often refill_freelist()
will need to run.

nref_dirt
−−−−−−−−−

When refill_freelist() comes across more than nref_dirt dirty buffers, it will
wake up bdflush.

age_buffer and age_super
−−−−−−−−−−−−−−−−−−−−−−−−

Finally, the age_buffer and age_super parameters govern the maximum time Linux
waits before  writing  out  a  dirty buffer to disk. The value is expressed in
jiffies (clockticks),  the  number of jiffies per second is 100. Age_buffer is
the maximum age for data blocks, while age_super is for filesystems meta data.

buffermem
−−−−−−−−−

The three  values  in  this  file  control  how much memory should be used for
buffer memory.  The  percentage  is calculated as a percentage of total system
memory.

The values are:

min_percent
−−−−−−−−−−−

This is  the  minimum  percentage  of  memory  that  should be spent on buffer
memory.

borrow_percent
−−−−−−−−−−−−−−

When Linux is short on memory, and the buffer cache uses more than it has been
allotted, the  memory  management  (MM)  subsystem will prune the buffer cache
more heavily than other memory to compensate.

max_percent
−−−−−−−−−−−

This is the maximum amount of memory that can be used for buffer memory.

freepages
−−−−−−−−−
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This file contains three values: min, low and high:

min
−−−
When the  number  of  free  pages  in the system reaches this number, only the
kernel can allocate more memory.

low
−−−
If the number of free pages falls below this point, the kernel starts swapping
aggressively.

high
−−−−
The kernel  tries  to  keep  up to this amount of memory free; if memory falls
below this point, the kernel starts gently swapping in the hopes that it never
has to do really aggressive swapping.

kswapd
−−−−−−

Kswapd is  the  kernel  swap  out daemon. That is, kswapd is that piece of the
kernel that  frees  memory when it gets fragmented or full. Since every system
is different, you'll probably want some control over this piece of the system.

The file contains three numbers:

tries_base
−−−−−−−−−−

The maximum  number  of  pages kswapd tries to free in one round is calculated
from this  number.  Usually  this  number  will  be  divided  by  4  or 8 (see
mm/vmscan.c), so it isn't as big as it looks.

When you  need to increase the bandwidth to/from swap, you'll want to increase
this number.

tries_min
−−−−−−−−−

This is  the  minimum number of times kswapd tries to free a page each time it
is called. Basically it's just there to make sure that kswapd frees some pages
even when it's being called with minimum priority.

swap_cluster
−−−−−−−−−−−−

This is probably the greatest influence on system performance.

swap_cluster is  the  number  of  pages kswapd writes in one turn. You'll want
this value  to  be  large  so that kswapd does its I/O in large chunks and the
disk doesn't  have  to  seek  as  often, but you don't want it to be too large
since that would flood the request queue.

overcommit_memory
−−−−−−−−−−−−−−−−−

This file  contains  one  value.  The following algorithm is used to decide if
there's enough  memory:  if  the  value of overcommit_memory is positive, then
there's always  enough  memory. This is a useful feature, since programs often
malloc() huge  amounts  of  memory 'just in case', while they only use a small
part of  it.  Leaving  this value at 0 will lead to the failure of such a huge
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malloc(), when in fact the system has enough memory for the program to run.

On the  other  hand,  enabling this feature can cause you to run out of memory
and thrash the system to death, so large and/or important servers will want to
set this value to 0.

pagecache
−−−−−−−−−

This file  does exactly the same job as buffermem, only this file controls the
amount of memory allowed for memory mapping and generic caching of files.

You don't  want  the  minimum level to be too low, otherwise your system might
thrash when memory is tight or fragmentation is high.

pagetable_cache
−−−−−−−−−−−−−−−

The kernel  keeps a number of page tables in a per−processor cache (this helps
a lot  on  SMP systems). The cache size for each processor will be between the
low and the high value.

On a  low−memory,  single  CPU system, you can safely set these values to 0 so
you don't  waste  memory.  It  is  used  on SMP systems so that the system can
perform fast  pagetable allocations without having to acquire the kernel memory
lock.

For large  systems,  the  settings  are probably fine. For normal systems they
won't hurt  a  bit.  For  small  systems  (  less  than  16MB ram) it might be
advantageous to set both values to 0.

swapctl
−−−−−−−

This file  contains  no less than 8 variables. All of these values are used by
kswapd.

The first four variables
* sc_max_page_age,
* sc_page_advance,
* sc_page_decline and
* sc_page_initial_age
are used  to  keep  track  of  Linux's page aging. Page aging is a bookkeeping
method to  track  which pages of memory are often used, and which pages can be
swapped out without consequences.

When a  page  is  swapped in, it starts at sc_page_initial_age (default 3) and
when the  page  is  scanned  by  kswapd,  its age is adjusted according to the
following scheme:

* If  the  page  was used since the last time we scanned, its age is increased
  by sc_page_advance  (default  3).  Where  the  maximum  value  is  given  by
  sc_max_page_age (default 20).
* Otherwise  (meaning  it wasn't used) its age is decreased by sc_page_decline
  (default 1).

When a page reaches age 0, it's ready to be swapped out.

The variables  sc_age_cluster_fract, sc_age_cluster_min, sc_pageout_weight and
sc_bufferout_weight, can  be  used  to  control  kswapd's  aggressiveness  in
swapping out pages.

Introduction to Linux

Appendix E. proc.txt 209



Sc_age_cluster_fract is used to calculate how many pages from a process are to
be scanned by kswapd. The formula used is

(sc_age_cluster_fract divided by 1024) times resident set size

So if you want kswapd to scan the whole process, sc_age_cluster_fract needs to
have a  value  of  1024.  The  minimum  number  of  pages  kswapd will scan is
represented by sc_age_cluster_min, which is done so that kswapd will also scan
small processes.

The values  of  sc_pageout_weight  and sc_bufferout_weight are used to control
how many  tries  kswapd  will make in order to swap out one page/buffer. These
values can  be used to fine−tune the ratio between user pages and buffer/cache
memory. When  you find that your Linux system is swapping out too many process
pages in  order  to  satisfy  buffer  memory  demands,  you may want to either
increase sc_bufferout_weight, or decrease the value of sc_pageout_weight.

2.5 /proc/sys/dev − Device specific parameters
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Currently there is only support for CDROM drives, and for those, there is only
one read−only  file containing information about the CD−ROM drives attached to
the system:

  >cat /proc/sys/dev/cdrom/info 
  CD−ROM information, Id: cdrom.c 2.55 1999/04/25 

  drive name:             sr0     hdb 
  drive speed:            32      40 
  drive # of slots:       1       0 
  Can close tray:         1       1 
  Can open tray:          1       1 
  Can lock tray:          1       1 
  Can change speed:       1       1 
  Can select disk:        0       1 
  Can read multisession:  1       1 
  Can read MCN:           1       1 
  Reports media changed:  1       1 
  Can play audio:         1       1 

You see two drives, sr0 and hdb, along with a list of their features.

2.6 /proc/sys/sunrpc − Remote procedure calls
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

This directory  contains four files, which enable or disable debugging for the
RPC functions NFS, NFS−daemon, RPC and NLM. The default values are 0. They can
be set to one to turn debugging on. (The default value is 0 for each)

2.7 /proc/sys/net − Networking stuff
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The interface  to  the  networking  parts  of  the  kernel  is  located  in
/proc/sys/net. Table  2−3  shows all possible subdirectories. You may see only
some of them, depending on your kernel's configuration.

Table 2−3: Subdirectories in /proc/sys/net 
..............................................................................
 Directory Content             Directory  Content            
 core      General parameter   appletalk  Appletalk protocol 
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 unix      Unix domain sockets netrom     NET/ROM            
 802       E802 protocol       ax25       AX25               
 ethernet  Ethernet protocol   rose       X.25 PLP layer     
 ipv4      IP version 4        x25        X.25 protocol      
 ipx       IPX                 token−ring IBM token ring     
 bridge    Bridging            decnet     DEC net            
 ipv6      IP version 6                   
..............................................................................

We will  concentrate  on IP networking here. Since AX15, X.25, and DEC Net are
only minor players in the Linux world, we'll skip them in this chapter. You'll
find some  short  info on Appletalk and IPX further on in this chapter. Review
the online  documentation  and the kernel source to get a detailed view of the
parameters for  those  protocols.  In  this  section  we'll  discuss  the
subdirectories printed  in  bold letters in the table above. As default values
are suitable for most needs, there is no need to change these values.

/proc/sys/net/core − Network core options
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

rmem_default
−−−−−−−−−−−−

The default setting of the socket receive buffer in bytes.

rmem_max
−−−−−−−−

The maximum receive socket buffer size in bytes.

wmem_default
−−−−−−−−−−−−

The default setting (in bytes) of the socket send buffer.

wmem_max
−−−−−−−−

The maximum send socket buffer size in bytes.

message_burst and message_cost
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

These parameters  are used to limit the warning messages written to the kernel
log from  the  networking  code.  They  enforce  a  rate  limit  to  make  a
denial−of−service attack  impossible. A higher message_cost factor, results in
fewer messages that will be written. Message_burst controls when messages will
be dropped.  The  default  settings  limit  warning messages to one every five
seconds.

netdev_max_backlog
−−−−−−−−−−−−−−−−−−

Maximum number  of  packets,  queued  on  the  INPUT  side, when the interface
receives packets faster than kernel can process them.

optmem_max
−−−−−−−−−−

Maximum ancillary buffer size allowed per socket. Ancillary data is a sequence
of struct cmsghdr structures with appended data.
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/proc/sys/net/unix − Parameters for Unix domain sockets
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

There are  only  two  files  in this subdirectory. They control the delays for
deleting and destroying socket descriptors.

2.8 /proc/sys/net/ipv4 − IPV4 settings
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

IP version  4  is  still the most used protocol in Unix networking. It will be
replaced by  IP version 6 in the next couple of years, but for the moment it's
the de  facto  standard  for  the  internet  and  is  used  in most networking
environments around  the  world.  Because  of the importance of this protocol,
we'll have a deeper look into the subtree controlling the behavior of the IPv4
subsystem of the Linux kernel.

Let's start with the entries in /proc/sys/net/ipv4.

ICMP settings
−−−−−−−−−−−−−

icmp_echo_ignore_all and icmp_echo_ignore_broadcasts
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Turn on (1) or off (0), if the kernel should ignore all ICMP ECHO requests, or
just those to broadcast and multicast addresses.

Please note that if you accept ICMP echo requests with a broadcast/multi\−cast
destination address  your  network  may  be  used as an exploder for denial of
service packet flooding attacks to other hosts.

icmp_destunreach_rate, icmp_echoreply_rate, icmp_paramprob_rate and icmp_timeexeed_rate
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Sets limits  for  sending  ICMP  packets  to specific targets. A value of zero
disables all  limiting.  Any  positive  value sets the maximum package rate in
hundredth of a second (on Intel systems).

IP settings
−−−−−−−−−−−

ip_autoconfig
−−−−−−−−−−−−−

This file contains the number one if the host received its IP configuration by
RARP, BOOTP, DHCP or a similar mechanism. Otherwise it is zero.

ip_default_ttl
−−−−−−−−−−−−−−

TTL (Time  To  Live) for IPv4 interfaces. This is simply the maximum number of
hops a packet may travel.

ip_dynaddr
−−−−−−−−−−

Enable dynamic  socket  address rewriting on interface address change. This is
useful for dialup interface with changing IP addresses.

ip_forward
−−−−−−−−−−
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Enable or  disable forwarding of IP packages between interfaces. Changing this
value resets  all other parameters to their default values. They differ if the
kernel is configured as host or router.

ip_local_port_range
−−−−−−−−−−−−−−−−−−−

Range of  ports  used  by  TCP  and UDP to choose the local port. Contains two
numbers, the  first  number  is the lowest port, the second number the highest
local port.  Default  is  1024−4999.  Should  be  changed  to  32768−61000 for
high−usage systems.

ip_no_pmtu_disc
−−−−−−−−−−−−−−−

Global switch  to  turn  path  MTU  discovery off. It can also be set on a per
socket basis by the applications or on a per route basis.

ip_masq_debug
−−−−−−−−−−−−−

Enable/disable debugging of IP masquerading.

IP fragmentation settings
−−−−−−−−−−−−−−−−−−−−−−−−−

ipfrag_high_trash and ipfrag_low_trash
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Maximum memory  used to reassemble IP fragments. When ipfrag_high_thresh bytes
of memory  is  allocated  for  this  purpose,  the  fragment handler will toss
packets until ipfrag_low_thresh is reached.

ipfrag_time
−−−−−−−−−−−

Time in seconds to keep an IP fragment in memory.

TCP settings
−−−−−−−−−−−−

tcp_ecn
−−−−−−−

This file controls the use of the ECN bit in the IPv4 headers, this is a new
feature about Explicit Congestion Notification, but some routers and firewalls
block trafic that has this bit set, so it could be necessary to echo 0 to
/proc/sys/net/ipv4/tcp_ecn, if you want to talk to this sites. For more info
you could read RFC2481.

tcp_retrans_collapse
−−−−−−−−−−−−−−−−−−−−

Bug−to−bug compatibility with some broken printers. On retransmit, try to send
larger packets to work around bugs in certain TCP stacks. Can be turned off by
setting it to zero.

tcp_keepalive_probes
−−−−−−−−−−−−−−−−−−−−

Number of  keep  alive  probes  TCP  sends  out,  until  it  decides  that the
connection is broken.
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tcp_keepalive_time
−−−−−−−−−−−−−−−−−−

How often  TCP  sends out keep alive messages, when keep alive is enabled. The
default is 2 hours.

tcp_syn_retries
−−−−−−−−−−−−−−−

Number of  times  initial  SYNs  for  a  TCP  connection  attempt  will  be
retransmitted. Should  not  be  higher  than 255. This is only the timeout for
outgoing connections,  for  incoming  connections the number of retransmits is
defined by tcp_retries1.

tcp_sack
−−−−−−−−

Enable select acknowledgments after RFC2018.

tcp_timestamps
−−−−−−−−−−−−−−

Enable timestamps as defined in RFC1323.

tcp_stdurg
−−−−−−−−−−

Enable the  strict  RFC793 interpretation of the TCP urgent pointer field. The
default is  to  use  the  BSD  compatible interpretation of the urgent pointer
pointing to the first byte after the urgent data. The RFC793 interpretation is
to have  it  point  to  the last byte of urgent data. Enabling this option may
lead to interoperatibility problems. Disabled by default.

tcp_syncookies
−−−−−−−−−−−−−−

Only valid  when  the  kernel  was  compiled  with CONFIG_SYNCOOKIES. Send out
syncookies when  the  syn backlog queue of a socket overflows. This is to ward
off the common 'syn flood attack'. Disabled by default.

Note that  the  concept  of a socket backlog is abandoned. This means the peer
may not  receive  reliable  error  messages  from  an  over loaded server with
syncookies enabled.

tcp_window_scaling
−−−−−−−−−−−−−−−−−−

Enable window scaling as defined in RFC1323.

tcp_fin_timeout
−−−−−−−−−−−−−−−

The length  of  time  in  seconds  it  takes to receive a final FIN before the
socket is  always  closed.  This  is  strictly  a  violation  of  the  TCP
specification, but required to prevent denial−of−service attacks.

tcp_max_ka_probes
−−−−−−−−−−−−−−−−−

Indicates how  many  keep alive probes are sent per slow timer run. Should not
be set too high to prevent bursts.
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tcp_max_syn_backlog
−−−−−−−−−−−−−−−−−−−

Length of  the per socket backlog queue. Since Linux 2.2 the backlog specified
in listen(2)  only  specifies  the  length  of  the  backlog  queue of already
established sockets. When more connection requests arrive Linux starts to drop
packets. When  syncookies  are  enabled the packets are still answered and the
maximum queue is effectively ignored.

tcp_retries1
−−−−−−−−−−−−

Defines how  often  an  answer  to  a  TCP connection request is retransmitted
before giving up.

tcp_retries2
−−−−−−−−−−−−

Defines how often a TCP packet is retransmitted before giving up.

Interface specific settings
−−−−−−−−−−−−−−−−−−−−−−−−−−−

In the directory /proc/sys/net/ipv4/conf you'll find one subdirectory for each
interface the  system  knows about and one directory calls all. Changes in the
all subdirectory  affect  all  interfaces,  whereas  changes  in  the  other
subdirectories affect  only  one  interface.  All  directories  have  the same
entries:

accept_redirects
−−−−−−−−−−−−−−−−

This switch  decides  if the kernel accepts ICMP redirect messages or not. The
default is 'yes' if the kernel is configured for a regular host and 'no' for a
router configuration.

accept_source_route
−−−−−−−−−−−−−−−−−−−

Should source  routed  packages  be  accepted  or  declined.  The  default  is
dependent on  the  kernel  configuration.  It's 'yes' for routers and 'no' for
hosts.

bootp_relay
~~~~~~~~~~~

Accept packets  with source address 0.b.c.d with destinations not to this host
as local ones. It is supposed that a BOOTP relay daemon will catch and forward
such packets.

The default  is  0,  since this feature is not implemented yet (kernel version
2.2.12).

forwarding
−−−−−−−−−−

Enable or disable IP forwarding on this interface.

log_martians
−−−−−−−−−−−−
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Log packets with source addresses with no known route to kernel log.

mc_forwarding
−−−−−−−−−−−−−

Do multicast routing. The kernel needs to be compiled with CONFIG_MROUTE and a
multicast routing daemon is required.

proxy_arp
−−−−−−−−−

Does (1) or does not (0) perform proxy ARP.

rp_filter
−−−−−−−−−

Integer value determines if a source validation should be made. 1 means yes, 0
means no.  Disabled by default, but local/broadcast address spoofing is always
on.

If you  set this to 1 on a router that is the only connection for a network to
the net,  it  will  prevent  spoofing  attacks  against your internal networks
(external addresses  can  still  be  spoofed), without the need for additional
firewall rules.

secure_redirects
−−−−−−−−−−−−−−−−

Accept ICMP  redirect  messages  only  for gateways, listed in default gateway
list. Enabled by default.

shared_media
−−−−−−−−−−−−

If it  is  not  set  the kernel does not assume that different subnets on this
device can communicate directly. Default setting is 'yes'.

send_redirects
−−−−−−−−−−−−−−

Determines whether to send ICMP redirects to other hosts.

Routing settings
−−−−−−−−−−−−−−−−

The directory  /proc/sys/net/ipv4/route  contains  several  file  to  control
routing issues.

error_burst and error_cost
−−−−−−−−−−−−−−−−−−−−−−−−−−

These parameters  are used to limit the warning messages written to the kernel
log from  the  routing  code.  The  higher the error_cost factor is, the fewer
messages will  be written. Error_burst controls when messages will be dropped.
The default settings limit warning messages to one every five seconds.

flush
−−−−−

Writing to this file results in a flush of the routing cache.

gc_elastic, gc_interval, gc_min_interval, gc_tresh, gc_timeout
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Values to  control  the  frequency  and  behavior  of  the  garbage collection
algorithm for the routing cache.

max_size
−−−−−−−−

Maximum size  of  the routing cache. Old entries will be purged once the cache
reached has this size.

max_delay, min_delay
−−−−−−−−−−−−−−−−−−−−

Delays for flushing the routing cache.

redirect_load, redirect_number
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Factors which  determine  if  more ICPM redirects should be sent to a specific
host. No  redirects  will be sent once the load limit or the maximum number of
redirects has been reached.

redirect_silence
−−−−−−−−−−−−−−−−

Timeout for redirects. After this period redirects will be sent again, even if
this has been stopped, because the load or number limit has been reached.

Network Neighbor handling
−−−−−−−−−−−−−−−−−−−−−−−−−

Settings about how to handle connections with direct neighbors (nodes attached
to the same link) can be found in the directory /proc/sys/net/ipv4/neigh.

As we  saw  it  in  the  conf directory, there is a default subdirectory which
holds the  default  values, and one directory for each interface. The contents
of the  directories  are identical, with the single exception that the default
settings contain additional options to set garbage collection parameters.

In the interface directories you'll find the following entries:

base_reachable_time
−−−−−−−−−−−−−−−−−−−

A base  value  used for computing the random reachable time value as specified
in RFC2461.

retrans_time
−−−−−−−−−−−−

The time,  expressed  in  jiffies  (1/100 sec), between retransmitted Neighbor
Solicitation messages.  Used  for  address  resolution  and  to determine if a
neighbor is unreachable.

unres_qlen
−−−−−−−−−−

Maximum queue  length  for a pending arp request − the number of packets which
are accepted from other layers while the ARP address is still resolved.

anycast_delay
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−−−−−−−−−−−−−

Maximum for  random  delay  of  answers  to  neighbor solicitation messages in
jiffies (1/100  sec). Not yet implemented (Linux does not have anycast support
yet).

ucast_solicit
−−−−−−−−−−−−−

Maximum number of retries for unicast solicitation.

mcast_solicit
−−−−−−−−−−−−−

Maximum number of retries for multicast solicitation.

delay_first_probe_time
−−−−−−−−−−−−−−−−−−−−−−

Delay for  the  first  time  probe  if  the  neighbor  is  reachable.  (see
gc_stale_time)

locktime
−−−−−−−−

An ARP/neighbor  entry  is only replaced with a new one if the old is at least
locktime old. This prevents ARP cache thrashing.

proxy_delay
−−−−−−−−−−−

Maximum time  (real  time is random [0..proxytime]) before answering to an ARP
request for  which  we have an proxy ARP entry. In some cases, this is used to
prevent network flooding.

proxy_qlen
−−−−−−−−−−

Maximum queue length of the delayed proxy arp timer. (see proxy_delay).

app_solcit
−−−−−−−−−−

Determines the  number of requests to send to the user level ARP daemon. Use 0
to turn off.

gc_stale_time
−−−−−−−−−−−−−

Determines how  often  to  check  for stale ARP entries. After an ARP entry is
stale it  will  be resolved again (which is useful when an IP address migrates
to another  machine).  When  ucast_solicit is greater than 0 it first tries to
send an  ARP  packet  directly  to  the  known  host  When  that  fails  and
mcast_solicit is greater than 0, an ARP request is broadcasted.

2.9 Appletalk
−−−−−−−−−−−−−

The /proc/sys/net/appletalk  directory  holds the Appletalk configuration data
when Appletalk is loaded. The configurable parameters are:

aarp−expiry−time
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−−−−−−−−−−−−−−−−

The amount  of  time  we keep an ARP entry before expiring it. Used to age out
old hosts.

aarp−resolve−time
−−−−−−−−−−−−−−−−−

The amount of time we will spend trying to resolve an Appletalk address.

aarp−retransmit−limit
−−−−−−−−−−−−−−−−−−−−−

The number of times we will retransmit a query before giving up.

aarp−tick−time
−−−−−−−−−−−−−−

Controls the rate at which expires are checked.

The directory  /proc/net/appletalk  holds the list of active Appletalk sockets
on a machine.

The fields  indicate  the DDP type, the local address (in network:node format)
the remote  address,  the  size of the transmit pending queue, the size of the
received queue  (bytes waiting for applications to read) the state and the uid
owning the socket.

/proc/net/atalk_iface lists  all  the  interfaces  configured for appletalk.It
shows the  name  of the interface, its Appletalk address, the network range on
that address  (or  network number for phase 1 networks), and the status of the
interface.

/proc/net/atalk_route lists  each  known  network  route.  It lists the target
(network) that the route leads to, the router (may be directly connected), the
route flags, and the device the route is using.

2.10 IPX
−−−−−−−−

The IPX protocol has no tunable values in proc/sys/net.

The IPX  protocol  does,  however,  provide  proc/net/ipx. This lists each IPX
socket giving  the  local  and  remote  addresses  in  Novell  format (that is
network:node:port). In  accordance  with  the  strange  Novell  tradition,
everything but the port is in hex. Not_Connected is displayed for sockets that
are not  tied to a specific remote address. The Tx and Rx queue sizes indicate
the number  of  bytes  pending  for  transmission  and  reception.  The  state
indicates the  state  the  socket  is  in and the uid is the owning uid of the
socket.

The /proc/net/ipx_interface  file lists all IPX interfaces. For each interface
it gives  the network number, the node number, and indicates if the network is
the primary  network.  It  also  indicates  which  device  it  is bound to (or
Internal for  internal  networks)  and  the  Frame  Type if appropriate. Linux
supports 802.3,  802.2,  802.2  SNAP  and DIX (Blue Book) ethernet framing for
IPX.

The /proc/net/ipx_route  table  holds  a list of IPX routes. For each route it
gives the  destination  network, the router node (or Directly) and the network
address of the router (or Connected) for internal networks.
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Summary
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Certain aspects  of  kernel  behavior  can be modified at runtime, without the
need to  recompile  the kernel, or even to reboot the system. The files in the
/proc/sys tree  can  not only be read, but also modified. You can use the echo
command to write value into these files, thereby changing the default settings
of the kernel.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Glossary

This section contains an alphabetical overview of commands discussed in this document.

A

a2ps
Format files for printing on a PostScript printer, see Section 8.1.2.

acroread
PDF viewer, see Section 8.1.2.2.

adduser
Create a new user or update default new user information.

alias
Create a shell alias for a command.

anacron
Execute commands periodically, does not assume continuously running machine.

apropos
Search the whatis database for strings, see Section 2.3.3.2.

apt−get
APT package handling utility, see Section 7.6.3.2.

aspell
Spell checker.

at, atq, atrm
Queue, examine or delete jobs for later execution, see Section 4.1.2.2 and Section 4.4.3.

aumix
Adjust audio mixer, see Section 7.4.3.3.

(g)awk
Pattern scanning and processing language.

B

bash
Bourne Again SHell, see Section 3.2.3.2 and Section 7.2.5.

batch
Queue, examine or delete jobs for later execution, see Section 4.1.2.2.

bg
Run a job in the background, see Section 4.1.2.1.

bitmap
Bitmap editor and converter utilities for the X window System.

bzip2
A block−sorting file compressor, see Section 9.1.1.3.

C

cat
Concatenate files and print to standard output, see Section 2.2 and Section 3.2.4.

cd
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Change directory, see Section 2.2.
cdp/cdplay

An interactive text−mode program for controlling and playing audio CD Roms under Linux, see
Section 7.4.3.1.

cdparanoia
An audio CD reading utility which includes extra data verification features, see Section 7.4.3.1.

cdrecord
Record a CD−R, see Section 9.2.2.

chattr
Change file attributes.

chgrp
Change group ownership, see Section 3.4.2.3.

chkconfig
Update or query run level information for system services, see Section 4.2.5.1.

chmod
Change file access permissions, see Section 3.4.1, Section 3.4.2.1 and Section 3.4.2.4.

chown
Change file owner and group, see Section 3.4.2.3.

compress
Compress files.

cp
Copy files and directories, see Section 3.3.2.

crontab
Maintain crontab files, see Section 4.4.4.

csh
Open a C shell, see Section 3.2.3.2.

cut
Remove sections from each line of file(s), see Section 7.2.5.2.

D

date
Print or set system date and time.

dd
Convert and copy a file (disk dump), see Section 9.2.1.2.

df
Report file system disk usage, see Section 3.1.2.3.

dhcpcd
DHCP client daemon, see Section 10.2.8.

diff
Find differences between two files.

dig
Send domain name query packets to name servers, see Section 10.1.2.6.

dmesg
Print or control the kernel ring buffer.

du
Estimate file space usage.
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E

echo
Display a line of text, see Section 3.2.1.

ediff
Diff to English translator.

egrep
Extended grep.

eject
Unmount and eject removable media, see Section 7.6.5.2.

emacs
Start the Emacs editor, see Section 6.1.2.2.

exec
Invoke subprocess(es).

exit
Exit current shell, see Section 2.2.

export
Add function(s) to the shell environment, see Section 3.2.1, Section 7.2.1.2 and Section 7.2.4.2.

F

fax2ps
Convert a TIFF facsimile to PostScript, see Section 8.1.2.

fdformat
Format floppy disk, see Section 9.2.1.1.

fdisk
Partition table manipulator for Linux, see Section 3.1.2.2.

fetchmail
Fetch mail from a POP, IMAP, ETRN or ODMR−capable server, see Section 10.2.2.3.

fg
Bring a job in the foreground, see Section 4.1.2.1.

file
Determine file type, see Section 3.3.1.2.

find
Find files, see Section 3.3.3.3.

formail
Mail (re)formatter, see Section 10.2.2.3.

fortune
Print a random, hopefully interesting adage.

ftp
Transfer files (unsafe unless anonymous account is used!)services, see Section 10.2.4.2.

G

galeon
Graphical web browser.

gdm
Gnome Display Manager, see Section 4.2.4.

(min/a)getty
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Control console devices.
gimp

Image manipulation program.
grep

Print lines matching a pattern, see Section 3.3.3.4 and Section 5.1.3.1.
groff

Emulate nroff command with groff, see Section 8.1.2.
grub

The grub shell, see Section 4.2.3 and Section 7.6.4.
gv

A PostScript and PDF viewer, see Section 8.1.2.2.
gzip

Compress or expand files, see Section 9.1.1.3.

H

halt
Stop the system, see Section 4.2.6.

head
Output the first part of files, see Section 3.3.4.3.

help
Display help on a shell built−in command.

host
DNS lookup utility, see Section 10.1.2.6.

httpd
Apache hypertext transfer protocol server, see Section 10.2.3.1.

I

id
Print real and effective UIDs and GIDs, see Section 3.4.1.

ifconfig
Configure network interface or show configuration, see Section 10.1.2.3.

info
Read Info documents, see Section 2.3.3.1.

init
Process control initialization, see Section 4.1.5.1, Section 4.2.4 and Section 4.2.5.

iostat
Display I/O statistics, see Section 4.3.5.4.

ip
Display/change network interface status, see Section 10.1.2.3.

ipchains
IP firewall administration, see Section 10.4.4.2.

iptables
IP packet filter administration, see Section 10.4.4.2.

J

jar
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Java archive tool, see Section 9.1.1.4.
jobs

List backgrounded tasks.

K

kdm
Desktop manager for KDE, see Section 4.2.4.

kill(all)
Terminate process(es), see Section 4.1.2.1.

ksh
Open a Korn shell, see Section 3.2.3.2.

L

ldapmodify
Modify an LDAP entry, see Section 10.2.9.3.

ldapsearch
LDAP search tool, see Section 10.2.9.3.

less
more with features, see Section 3.3.4.2.

lilo
Linux boot loader, see Section 4.2.

links
Text mode WWW browser, see Section 10.2.3.2.

ln
Make links between files, see Section 3.3.5.

loadkeys
Load keyboard translation tables, see Section 7.5.1.

locate
Find files, see Section 3.3.3.3 and Section 4.4.4.

logout
Close current shell, see Section 2.1.3.

lp
Send requests to the LP print service, see Section 8.1.

lpc
Line printer control program, see Section 8.1.

lpq
Print spool queue examination program, see Section 8.1.

lpr
Offline print, see Section 8.1.

lprm
Remove print requests, see Section 8.1.

ls
List directory content, see Section 2.2, Section 3.1.1.2 and Section 3.3.1.1.

lynx
Text mode WWW browser, see Section 10.2.3.2.
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M

mail
Send and receive mail, see Section 10.2.2.3.

man
Read man pages, see Section 2.3.2.

mcopy
Copy MSDOS files to/from Unix.

mdir
Display an MSDOS directory.

memusage
Display memory usage, see Section 4.3.5.3.

memusagestat
Display memory usage statistics, see Section 4.3.5.3.

mesg
Control write access to your terminal, see Section 4.1.6.

mformat
Add an MSDOS file system to a low−level formatted floppy disk, see Section 9.2.1.1.

mkbootdisk
Creates a stand−alone boot floppy for the running system.

mkdir
Create directory, see Section 3.3.2.

mkisofs
Create a hybrid ISO9660 filesystem, see Section 9.2.2.

more
Filter for displaying text one screen at the time, see Section 3.3.4.2.

mount
Mount a file system or display information about mounted file systems, see Section 7.6.5.1.

mozilla
Web browser, see Section 10.2.3.2.

mt
Control magnetic tape drive operation.

mtr
Network diagnostic tool.

mv
Rename files, Section 3.3.2.

N

named
Internet domain name server, see Section 10.2.7.

ncftp
Browser program for ftp services (insecure!), see Section 10.2.4.2.

netstat
Print network connections, routing tables, interface statistics, masquerade connections, and multi−cast
memberships, see Section 10.1.2.5 and Section 10.4.2.

nfsstat
Print statistics about networked file systems.

nice
Run a program with modified scheduling priority, see Section 4.3.5.1.
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ntsysv
Simple interface for configuring run levels, see Section 4.2.5.1.

P

passwd
Change password, see Section 2.2 and Section 4.1.6.

pdf2ps
Ghostscript PDF to PostScript translator, see Section 8.1.2.

perl
Practical Extraction and Report Language.

pg
Page through text output, see Section 3.3.4.2.

ping
Send echo request to a host, see Section 10.1.2.6.

pr
Convert text files for printing.

printenv
Print all or part of environment, see Section 7.2.1.

procmail
Autonomous mail processor, see Section 10.2.2.3.

ps
Report process status, see Section 4.1.4 and Section 4.3.5.4.

pstree
Display a tree of processes, see Section 4.1.4.

pwd
Print present working directory, see Section 2.2.

Q

quota
Display disk usage and limits, see Section 3.2.3.3.

R

rcp
Remote copy (unsafe!)

reboot
Stop the system, see Section 4.2.6.

renice
Alter priority of a running process, see Section 4.3.5.1.

rlogin
Remote login (telnet, insecure!), see Section 10.3.2 and Section 10.3.3.2.

rm
Remove a file, see Section 3.3.2.

rmdir
Remove a directory, see Section 3.3.2.2.

roff
A survey of the roff typesetting system, see Section 8.1.2.
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rpm
RPM Package Manager, see Section 7.6.2.1.

rsh
Remote shell (insecure!), see Section 10.3.2.

S

scp
Secure remote copy, see Section 10.3.4.4.

screen
Screen manager with VT100 emulation, see Section 4.1.2.1.

set
Display, set or change variable.

setterm
Set terminal attributes.

sftp
Secure (encrypted) ftp, see Section 10.2.4.2 and Section 10.3.4.4.

sh
Open a standard shell, see Section 3.2.3.2.

shutdown
Bring the system down, see Section 4.2.6.

sleep
Wait for a given period, see Section 4.4.1.

slocate
Security Enhanced version of the GNU Locate, see Section 3.3.3.3.

slrnn
text mode Usenet client, see Section 10.2.6.

snort
Network intrusion detection tool.

sort
Sort lines of text files, see Section 5.1.3.2.

ssh
Secure shell, see Section 10.3.4.

ssh−keygen
Authentication key generation, management and conversion, see Section 10.3.4.5.

stty
Change and print terminal line settings.

su
Switch user, see Section 3.2.1, Section 7.6.3.2 and Section 10.4.6.

T

tac
Concatenate and print files in reverse, see cat.

tail
Output the last part of files, see Section 3.3.4.3.

talk
Talk to a user.

tar
Archiving utility, see Section 9.1.1.1.
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tcsh
Open a Turbo C shell, see Section 3.2.3.2.

telnet
User interface to the TELNET protocol (insecure!), see Section 10.3.2.

tex
Text formatting and typesetting, see Section 8.1.2.

time
Time a simple command or give resource usage, see Section 4.3.2.

tin
News reading program, see Section 10.2.6.

top
Display top CPU processes, see Section 4.1.4, Section 4.3.5.3 and Section 4.3.5.4.

touch
Change file timestamps, see Section 7.1.2.

traceroute
Print the route packets take to network host, see Section 10.1.2.6.

tripwire
A file integrity checker for UNIX systems, see Section 10.4.5.

troff
Format documents, see Section 8.1.2.

twm
Tab Window Manager for the X Window System.

U

ulimit
Controll resources, see Section 7.1.2.5.

umask
Set user file creation mask, see Section 3.4.2.2.

umount
Unmount a file system.

uncompress
Decompress compressed files.

uniq
Remove duplicate lines from a sorted file, see Section 5.1.3.2.

update
Kernel daemon to flush dirty buffers back to disk.

uptime
Display system uptime and average load, see Section 4.1.4 and Section 4.3.5.2.

userdel
Delete a user account and related files.

V

vi(m)
Start the vi (improved) editor, see Section 6.1.2.3.

vimtutor
The Vim tutor.

vmstat
Report virtual memory statistics, see Section 4.3.5.4.
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W

w
Show who is logged on and what they are doing.

wall
Send a message to everybody's terminal, see Section 4.1.6.

wc
Print the number of bytes, words and lines in files, see Section 3.2.1.

which
Shows the full path of (shell) commands, see Section 3.2.1 and Section 3.3.3.2.

who
Show who is logged on, see Section 4.1.6.

who am i
Print effective user ID.

whois
Query a whois or nicname database, see Section 10.1.2.6.

write
Send a message to another user, see Section 4.1.6.

X

xauth
X authority file utility.

xcdroast
Graphical front end to cdrecord, see Section 9.2.2.

xclock
Analog/digital clock for X.

xconsole
Monitor system console messages with X.

xdm
X Display Manager with support for XDMCP, host chooser, see Section 4.2.4 and Section 7.3.2.

xdvi
DVI viewer, see Section 8.1.2.2.

xfs
X font server.

xhost
Server access control program for X, see Section 10.3.3.2

xinetd
The extended Internet services daemon, see Section 10.2.1.2.

xload
System load average display for X, see Section 4.3.5.6.

xlsfonts
Server font list displayer for X.

xmms
Audio player for X, see Section 7.4.3.2.1.

xpdf
PDF viewer, see Section 8.1.2.2.

xterm
Terminal emulator for X.
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Z

zcat
Compress or expand files.

zgrep
Search possibly compressed files for a regular expression.

zmore
Filter for viewing compressed text.
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