Hardware Detection for GNU /Linux

Josh Triplett

June 2, 2004

Contents

Abstract
Introduction
Architecture of GNU/Linux
Current State of the Art L.
Ideal Scenario
Modularity, Layering, and Existing Software
Hotplugging
Device Identification and Naming
Hardware Abstraction
User Interaction
Reviewing and Configuring Current Hardware
Portability Concerns L.
Work Needed
Gathering Device Information
Low-level Device Support
User-Interface Layers
Installing Applications on Demand
Implementation of Ideal Scenario
Conclusion e
Glossary
Works Cited

Copyright (©) 2004 Josh Triplett.

This document is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free

Software Foundation, version 2 dated June, 1991.

Abstract

This document discusses the design of a comprehensive hardware detection
and configuration system for the GNU/Linux operating system.

GNU/Linux is a Free Software operating system, popular among tech-
nical users because it grants the freedom to study, modify, and distribute
the system. Over time, GNU/Linux is rapidly improving in usability for
non-technical users as well. One major step in that direction would be the
introduction of a system to automatically set up new hardware for use.

When computer users plug in a hardware device, they expect it to start
working immediately, with as little manual configuration as possible. Users
shouldn’t need to understand how their computer interacts with the device;
they only want to run an application that allows them to use their hard-
ware. Achieving this level of functionality requires a hardware detection and
configuration system. This system will:

e Detect new, unconfigured devices

e Gather all necessary information to configure them, asking the user for

only the information that cannot be automatically determined
e Perform any necessary setup

e Run an appropriate application for the user to interact with the device

This document discusses the design of such a system, including architec-
tural factors that affect the design, currently-available components that will

form parts of the system, and the work required to create a finished solution.

i

Josh Triplett Hardware Detection for GNU/Linux

Introduction

GNU/Linux is a Free Software operating system, meaning that everyone
has the right to use it, copy it, modify it, and distribute it. (Free Software
Foundation, 2004) This freedom allows communities of developers from all
parts of the world to work on each part of the system collaboratively. Users
of the system choose it due to both the freedom it offers and the high-quality
software this freedom promotes.

For the first few years after GNU/Linux was first written, it was primarily
usable only by developers and hobbyists - those who were more than willing to
learn much about how the system worked in order to use it. As GNU/Linux
matured, however, developers began to seriously work toward usability for
the average computer user, who doesn’t really care how the system works as
long as it does. This has led to such advances as Human Interface Guidelines
to define how to interact with the user (Benson et al., 2002), and usability
studies to determine the effectiveness of that interaction (Relevantive AG,
2004). However, one notable usability feature that GNU/Linux currently
lacks is a comprehensive hardware detection and configuration system.

When users plug in a new device, they expect it to start working as soon
as possible, with minimal user input required to set it up. This functionality
requires hardware detection and configuration software that can detect the
new device, ask the user for any required information that cannot be auto-
matically determined, perform any necessary setup, and run an appropriate
application to use the device. This document discusses the design of such

software, including architectural factors that affect the design, currently-

Page 1 of 20

Josh Triplett Hardware Detection for GNU/Linux

available components that solve parts of the problem, and work still needed

to create a finished solution.

Architecture of GNU /Linux

GNU/Linux systems have some fundamental architecture choices that
affect the design of any potential hardware detection system.

First, a GNU/Linux system supports multiple independent users, each
with their own private directory for files. These users can all access the sys-
tem simultaneously, either through a network connection, or by using multi-
ple monitors, keyboards, and mice on a single system. A user typically has
permission to write only to their own directory and to temporary space, and
cannot modify system files or other users’ files. There is one administrative
user, called “root”, who has permission to write anywhere, and to directly
access system hardware. Even on a single-user system, the administrator
and sole user typically uses a normal user account for day-to-day computing,
and only uses the root account for administration. Therefore, the hardware
detection system must ensure the user has sufficient permissions to access a
given device and configure the necessary software support, and enable that
user to determine which other users will be allowed to use the device.

Second, a GNU/Linux system can have many different graphical environ-
ments installed, or none at all. The most popular environments are KDE
(KDE e. V., 2004) and GNOME (GNOME Project, 2003), each based on
a different underlying graphical framework. Typical GNU/Linux systems
have thousands of graphical applications to choose from, most based on one

of these graphical frameworks and designed to fit well in the corresponding

Page 2 of 20

Josh Triplett Hardware Detection for GNU/Linux

environment. The hardware detection system must integrate into the user’s
environment of choice, while having as little environment-specific code as
possible.

Finally, GNU/Linux is highly modular and layered. The three layers rel-
evant to a hardware detection system are drivers, daemons, and applications.
Drivers are the small portions of code that run in the kernel and provide a
low-level interface to hardware devices. Daemons are programs that access
that interface and allow applications to perform useful operations with the
devices while being less dependent on the actual device type. (Daemons are
not necessary for all devices.) Applications are the myriad user programs
that can take advantage of hardware devices, by accessing the interface pro-
vided by drivers or daemons. The hardware detection system must interact

with all three layers in order to fully configure a piece of hardware.

Current State of the Art

Current hardware detection systems have excellent support for detecting
the appropriate low-level kernel driver to use. These systems have databases
that map identifying information about the hardware to names of drivers.
When a new device is plugged into the system or detected at boot-time, the
system looks it up, finds the driver name, and loads that driver.

At the daemon level, hardware detection is less mature. Many daemons
provide easy-to-use setup utilities, but the user must still provide much con-
figuration information that could be determined automatically. For example,
the Common UNIX Printing System (CUPS) and some of its frontends have

guided configuration wizards to help the user detect and set up a new printer

Page 3 of 20

Josh Triplett Hardware Detection for GNU/Linux

easily, but the user must still select the type of printer they have, name it,
and possibly download a PostScript Printer Definition (PPD) file. For some
printers, the user may also need to install and additional software.

At the application level, current applications can generally determine an
appropriate default device to use, such as the system default printer, scanner,
or sound card. If the user wants to use a device other than the default,
they can generally choose the device they want from a menu of all devices
on the system. However, the user must still manually run the appropriate
application, and so they must know what application to use for each type
of device, forcing them to think in terms of programs to run rather than
tasks to perform. In addition, if the user has never used a particular type of
device before, they may not have the appropriate software installed to use it,
so they must determine what applications to install and install them. Some
GNU/Linux distributions choose to avoid this by installing everything the
user might need initially, but this makes for a lengthy initial installation, and
leads to the problem of finding the appropriate application in a huge menu

of choices, many of which may never be used.

Ideal Scenario

When a user plugs in a new hardware device, the hardware detection
system will attempt to set up the device while asking the user for as little
information as possible. For many devices, all required configuration infor-
mation can be detected automatically without asking the user, so the system
will simply set up and enable the device and notify the user unobtrusively

when the device is ready for use. Depending on the device, the configuration

Page 4 of 20

Josh Triplett Hardware Detection for GNU/Linux

utility may need to request administrator credentials. The user may choose
to receive a prompt first, showing the system’s planned setup and asking if
the device should be set up automatically, allowing the user to change some
options or configure the device manually. The user and the GNU/Linux
distributor will choose whether this prompt appears by default or whether
devices are configured with no interaction.

For devices requiring some user input to set up, the hardware detection
system will notify the user that it found a new device, and allow the user to
open a step-by-step configuration window. This configuration window will
request administrator credentials if necessary, and then ask for the informa-
tion required to set up the device. The user should always have the option
of more control over the configuration, but they must have the option of
simply accepting a set of defaults. The hardware detection system will then
configure all necessary drivers and daemons needed to access the hardware,
and help the user install applications to use the device if they are not already
installed.

Once the device is set up, or if a device has already been seen and config-
ured before, the hardware detection system will offer to launch an application
to work with the data. This could be a scanning program to operate a scan-
ner, a file manager to view the contents of a disk, or a save/print pictures

wizard for a digital camera.

Modularity, Layering, and Existing Software

Like GNU/Linux itself, the hardware detection system will be modular

and layered, both to handle many different frontends for different environ-

Page 5 of 20

Josh Triplett Hardware Detection for GNU/Linux

ments, and to take advantage of existing software that can provide some

of the components. These components and their interactions are shown in

Figure 1.
Hardware
New hardware ~Hardware
\J Kernel
Kernel &
Drivers
”Hotprlug event)) Kerrﬁrjgl
\ Daemons
hotplug
Notify Notify
~
dov D AL
- : >
UdeV " =into Messaging
Layer Notify and T
Provide Info
— v) ~ Daemons
\J User Programs

Package instal | User |start .
—» Applications

“A
Manager| "PP° | Interface

Get Info
Interact Interact

User

Figure 1: Components and Interactions

Page 6 of 20

Josh Triplett Hardware Detection for GNU/Linux

Hotplugging

In order to set up a new piece of hardware, the hardware detection sys-
tem needs some way to detect when a new device is plugged in and take
appropriate action. During the creation of the Linux 2.4 kernel, developers
added support for hotplugging hardware such as USB devices and PCMCIA
cards, meaning that they can be inserted while the system is running. When
the kernel detects a new device, it calls a program called hotplug, which
can then do some minimal level of configuration, such as bringing up the
network when a network card is inserted (if the network supports automatic
configuration). (Linux Hotplug Project)

This works well for devices designed to be hotplugged, but what about
devices that are present when the system boots? To handle this scenario, the
newest version of the kernel, Linux 2.6, can call hotplug for any device, even
if it was present at boot time; this is known as “coldplugging”. This unifies
the low-level architecture of the hardware detection system, so that it does
not need two separate backends to handle normal and hotplugged devices.

Once the hotplug utility gets control, it can run any arbitrary command
scripts set up previously. Current scripts simply enable a device if the user
has previously set it up. However, the same mechanism also allows the next
layer of the hardware detection system to hook in and get a notification for

each new device.

Device Identification and Naming

Once a new device has been detected, the system must identify and name

it. In a GNU/Linux system, every device appears as a file in a special

Page 7 of 20

Josh Triplett Hardware Detection for GNU/Linux

directory, /dev, and applications access devices through the corresponding
device file. On many systems, that directory contains thousands of device
files, most for devices the user does not have. This architecture was designed
when hardware rarely changed, and so rather than creating new device files
for new devices, it was easier to have every possible device file available.
This system also names devices based on how the system accesses them:
/dev/sdc is always the third SCSI disk, and /dev/1p0 the first printer.

Associating a particular device file with the third hard disk or the first
printer works fine for static devices, but what happens when the user plugs
in devices in a different order? The user should not need to figure out if
the USB camera they just plugged in is /dev/sda or /dev/sdb. Ideally, a
particular name will be associated with each unique device, such as /dev/
minolta-camera.

The solution to this problem can be found in udev, another part of the
hotplug suite. udev provides an easy way to configure device naming based
on the identity of a device. This naming configuration can be provided by
simple configuration files, or by running other programs that determine the
appropriate name. This allows the hardware detection system to hook into

the device naming process. (Linux Hotplug Project)

Hardware Abstraction

The low-level layers of hotplug and udev will interact directly with the
kernel interfaces to the device. However, these layers should not main-
tain the database of hardware information, because they are specific to the
GNU /Linux operating system, and the hardware detection system as a whole

must be portable. In addition, more information may be needed than is im-

Page 8 of 20

Josh Triplett Hardware Detection for GNU/Linux

mediately available to the low-level layers, and it may be necessary to look
at multiple sources to collect all the information needed to set up and use a
device. Finally, user-level applications should not need to know how a device
is connected in order to access it.

The Hardware Abstraction Layer (HAL) solves these problems in a par-
ticularly elegant way. HAL provides a view of all devices on the system, with
a set of properties for each. These properties can contain any arbitrary in-
formation associated with the device, from any source that can communicate
with HAL. HAL uses an XML-based database of Free Device Information
(FDI) files to map the basic identifying information from a device to informa-
tion about the type and capabilities of the device. As described by the HAL
Frequently Asked Questions (FAQ) page, HAL can merge this information
gathered from the hardware with information from the kernel, system con-
figuration files, data from user interaction, and many other sources. Other
layers of the hardware detection system can query HAL to determine the
information needed to set up the device, while daemons, applications, and

hardware access libraries can query HAL to decide what devices to act on.

(HAL)

User Interaction

The device configuration process may require user interaction, and so will
launching the appropriate application once the device is configured. The low-
level layers cannot simply open a window to interact with the user, because
there may be several users on the system, each running a different desktop
environment. The user interface must appear only for the appropriate users,

and must integrate into those users’ environments. In addition, the user-

Page 9 of 20

Josh Triplett Hardware Detection for GNU/Linux

interface should run as a normal user for security reasons, while the low-
level layers will run as root to access the hardware. For these reasons, all
interaction will occur through a user-interface layer, which must somehow
communicate with the rest of the hardware detection system.

This is where D-BUS comes in. D-BUS (for Desktop Bus) is a messaging
layer, which allows applications to send messages to each other, and listen for
certain types of messages. (D-BUS) The hardware abstraction layer can use
D-BUS to send a notification about new devices, while the high-level layers
can listen for such notifications. This would allow a different user-interface
layer for a different desktop environment to communicate with the same low-
level layers. Ideally, as little of the overall system as possible should specific
to a particular implementation of the user-interface layer.

D-BUS also solves another problem: what to do if a device is plugged
in when no user is logged in, or if devices are detected on boot before users
can log in. When a user logs in and the user-interface layer starts up, it can
ask the other layers (via D-BUS messages) if there is any new hardware to

configure, and then configure it as if it was just plugged in.

Reviewing and Configuring Current Hardware

In addition to setting up newly-plugged-in hardware, the hardware de-
tection system must allow the user to review all devices and change their
configuration. This includes the hardware that is currently plugged in, as
well as the saved hardware configurations for devices seen in the past. The
hardware management utility should allow the user to see the questions they
answered when the hardware was initially plugged in, and change the an-

swers, with the device configuration updated accordingly. While the hard-

Page 10 of 20

Josh Triplett Hardware Detection for GNU/Linux

ware reconfiguration interface should be part of the user-interface layer in
order to integrate with the user’s environment, the underlying reconfigura-
tion mechanism should be uniform for all frontends.

In the past, many efforts to create user-friendly configuration utilities
have met with backlash from advanced users, because such utilities frequently
assume they are the only application performing system configuration. Based
on this assumption, these utilities overwrite existing configuration files when
run, and do not preserve configuration changes made outside of the utility.
They also output long, unorganized configuration files with no comments,
making further editing difficult. GNU/Linux has a long history of being
configurable using only a text editor, and any configuration utility must
preserve that functionality for users who wish to use it. For this reason, the
reconfiguration utility must preserve user changes to configuration files, in

order to support both novices and experts.

Portability Concerns

In addition to the most common personal computer platforms, x86 and
PowerPC, the GNU/Linux operating system runs on architectures ranging
from PDASs to mainframes. The most widely ported GNU /Linux distribution,
Debian, currently runs on 11 architectures, with several more on the way.
(Debian Project, 2004) The hardware detection system should endeavor to
support the users of these architectures.

For architectures that support the same hardware standards as a PC, such
as PCI, USB, and Firewire, portability simply requires the ability to compile
and run on such machines, and detect the same types of hardware, using

the same kernel interfaces. Other, more unusual architectures may require

Page 11 of 20

Josh Triplett Hardware Detection for GNU/Linux

additional support for new types of hardware specific to that architecture.
In all cases, only the low-level layers that directly access the hardware will
change; the hardware abstraction layer will insulate the high-level layers from
these changes.

In addition to different hardware architectures, the hardware detection
system should be portable to other Free Software operating systems, includ-
ing FreeBSD (FreeBSD Project, 2004), NetBSD (NetBSD Foundation, Inc.,
2004), OpenBSD (OpenBSD, 2004), and even GNU/Hurd once it is ready
for non-developer use (Free Software Foundation, 2003). Supporting a dif-
ferent operating system will require many changes in the low-level layers of
the hardware detection system, to accommodate the differences in the kernel

and driver, but the high-level layers should still work unchanged.

Work Needed

There are several areas in which major work is still required to make
the hardware detection system complete. These include gathering device
information, adding low-level support for more types of devices, writing user-

interface layers, and installing applications on demand.

Gathering Device Information

In order to be useful, the hardware detection system must know about
as many devices as possible. Much of this information is already available in
various hardware databases. For example, LinuxPrinting.org currently main-
tains a database of nearly 1,200 printer models and the corresponding driver

names, along with PostScript Printer Definition files for each printer. This

Page 12 of 20

Josh Triplett Hardware Detection for GNU/Linux

database is readable both by users and by programs. (Taylor and Kamp-
peter, 2004) The hardware detection system could add a module to read
device information from such sources, or the information could be automat-
ically converted into the native format of the hardware detection system.

In the standard Free Software development model, preliminary versions
of the software are made available for use by developers or advanced users.
When this occurs, many of these early adopters will submit device descrip-
tions for the hardware they personally have access to. In this way, many
hardware devices, from the popular to the obscure, will be well-supported
by the time the software is considered stable enough for use by the average
user.

Once the device information is available, it could also be used to gener-
ate a comprehensive hardware compatibility list. Such a list would allow
users to evaluate the support for their current hardware when switching
to GNU/Linux, or determine what model of device to purchase for their

GNU/Linux system.

Low-level Device Support

While adding support for a new device is simply a matter of providing
some information about the device, adding support for a new type of device
requires some work on the low-level layers. Each new device type, connec-
tion type, or daemon requires some low-level support in addition to the new
information about each device. Because of the hardware abstraction layer,
these changes should not affect other components of the hardware detection

system.

Page 13 of 20

Josh Triplett Hardware Detection for GNU/Linux

User-Interface Layers

Each desktop environment needs a user-interface layer to interact with
the user and define the device actions specific to that environment. Project
Utopia (Love, 2004) is currently working on an interface for the GNOME
desktop environment. A similar effort is needed for the KDE environment,
as well as a possible generic layer to handle the many users who prefer a
less common environment. In theory, a user-interface layer could even be
provided for non-graphical users, who interact with the system only through
a text console. Such an environment could help novice users setting up a
headless server for their home network, or system administrators who are

not necessarily hardware experts.

Installing Applications on Demand

While the initial versions of the hardware detection system can simply
rely on all necessary software packages being installed, eventually the system
should have support for installing applications as they are needed. When the
user adds a new hardware device, the hardware detection system can look up
useful applications based on the type of the hardware device. This process
will also involve some environment-specific policy, since applications designed
for a specific environment will integrate better into that environment.

The exact procedures for querying available applications and installing
applications differ between GNU /Linux distributions, but the basic idea is
generally the same. There is an underlying package-management architecture
for each distribution, which provides tools for the user to browse available

packages, install and remove packages, or upgrade to the latest versions. The

Page 14 of 20

Josh Triplett Hardware Detection for GNU/Linux

hardware detection system can have a distribution-specific layer for managing
packages, which can query the available packages, provide them as sugges-
tions to the user-interface layer, and start up the user’s preferred package
manager to install them if desired. This functionality will also require sup-
port from the individual distributions, by labelling packages that would be
useful for using a particular type of device in a particular desktop environ-

ment.

Implementation of Ideal Scenario

When a user plugs in a new hardware device, the kernel will detect the
device and generate a hotplug event. The hotplug program will search for
the type of device, and run an appropriate script. This script will notify HAL
of the new device via D-BUS. Hotplug will also notify udev, which will ask
HAL for information needed to name the device; this information may not be
available yet, so udev will have to wait. HAL will gather as much information
as it can, both directly and via external programs. Once all possible infor-
mation has been gathered and various HAL device properties have been set,
the user-interface layer is notified about the device. The user-interface layer
decides, based on a policy defined by the desktop environment, distributor,
and user, what to do about the device. If there is enough information to set
the device up non-interactively, the user-interface layer may do so; otherwise,
it may guide the user through providing the remaining information needed.
At this point, there is enough information to set up the device node via
udev. The user-interface layer may also determine if additional applications

are needed, and offer the user the option of installing them. Finally, once

Page 15 of 20

Josh Triplett Hardware Detection for GNU/Linux

the device is set up, the user-interface layer will determine the appropriate

action to take, such as launching an application to use the device.

Conclusion

GNU/Linux has come a long way, maturing into a system useful to
users with a broad range of experience. However, hardware setup under
GNU/Linux is still primarily a manual process. This makes such setup dif-
ficult for new users, and time-consuming even for experienced users. The
addition of a comprehensive hardware detection and configuration system

would greatly improve usability for novice and expert alike.

Page 16 of 20

Josh Triplett Hardware Detection for GNU/Linux

Glossary

application Can refer to any program, but commonly refers to a program
that the user interacts with directly. To access hardware, applications

talk to daemons or device files.

coldplug To synthesize a hotplug event for a device present when the com-
puter boots, in order to use the same hotplug architecture for every

device.

daemon A program that runs outside the kernel, talks to devices through

device files, and provides a high-level interface for applications.

D-BUS Desktop Bus - a messaging layer, allowing programs to send and

receive messages without talking to each other directly.
device A piece of hardware.

device file A file, usually in the /dev directory, which represents a device.

Programs can access the device by reading and writing this file.

driver A low-level hardware access program, which runs in the kernel, talks
directly to a hardware device, and provides an interface for applications

to access that device, typically through a device file.

Free Software Software that grants users the right to use, copy, modify,

and distribute it.

GNOME The GNU Network Object Model Environment - one of the two

major desktop environments for users of GNU/Linux.

Page 17 of 20

Josh Triplett Hardware Detection for GNU/Linux

GINU GNU’s Not UNIX - a project to create a complete, UNIX-compatible

operating system composed entirely of Free Software.

GNU/Linux A Free Software operating system based on GNU software

running on the Linux kernel.

HAL Hardware Abstraction Layer - a layer between devices and other pro-
grams, which provides a uniform interface for gathering information

about devices.

hotplug To plug in a device while the system is running. Also refers to the

program of the same name, which detects hotplug events in GNU/Linux.

KDE K Desktop Environment - one of the two major desktop environments

for users of GNU/Linux.

kernel The core of an operating system, which runs directly on the hardware

and provides an interface to run higher-level programs.
Linux A Free, UNIX-compatible operating system kernel.

operating system The set of all programs that run all the basic operations

of a computer, and provides services to applications.

udev A GNU/Linux program that manages the creation and naming of

device files.

UNIX A class of operating systems characterized by the interface they pro-
vide to applications, as well as certain common architectural choices.
GNU/Linux, FreeBSD, NetBSD, OpenBSD, and GNU/Hurd are all

UNIX-compatible operating systems.

Page 18 of 20

Josh Triplett Hardware Detection for GNU/Linux

Works Cited

Calum Benson, Adam Elman, Seth Nickell, and Colin Z Robertson.
GNOME Human Interface Guidelines, 2002, 24 May 2004. (http://

developer.gnome.org/projects/gup/hig/1.0/).
D-BUS. D-BUS, 24 May 2004. (http://dbus.freedesktop.org/).

Debian Project. Debian GNU/Linux - Ports, 2004, 24 May 2004. (http://

www.debian.org/ports/).

Free Software Foundation. The GNU Hurd, 2003, 24 May 2004. (http://

www.gnu.org/software/hurd/hurd.html).

Free Software Foundation. The Free Software Definition, 2004, 24 May 2004.

(http://www.gnu.org/philosophy/free-sw.html).

FreeBSD Project. The FreeBSD Project, 2004, 24 May 2004. (http://

www.freebsd.org/).

GNOME Project. GNOME: The Free Software Desktop Project, 2003, 24

May 2004. (http://www.gnome.org/).

HAL. HAL - Hardware Abstraction Layer, 24 May 2004. (http://

hal.freedesktop.org/).

KDE e. V. KDE Homepage - Conquer your Desktop!, 2004, 24 May 2004.

(http://www.kde.org/).

Linux Hotplug Project. Linux Hotplugging, 24 May 2004. (http://

linux-hotplug.sourceforge.net/).

Page 19 of 20

Josh Triplett Hardware Detection for GNU/Linux

Robert Love. Robert Love’s Log: Project Utopia, Apr 2004, 24
May 2004. (http://primates.ximian.com/ rml/blog/archives/

000395.html).

NetBSD Foundation, Inc. The NetBSD Project, 2004, 24 May 2004.

(http://www.netbsd.org/).
OpenBSD. OpenBSD, 2004, 24 May 2004. (http://www.openbsd.org/).

Relevantive AG. Linux-Project: Studies, 2004, 24 May 2004. (http://

www.relevantive.de/Linux-Usabilitystudy_e.html).

Grant Taylor and Till Kamppeter. LinuxPrinting.org, 2004, 24 May 2004.

(http://linuxprinting.org/).

Page 20 of 20

